7.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{17π}{6}$B.$\frac{17π}{3}$C.D.$\frac{13π}{6}$

分析 由三視圖知幾何體是一個組合體,包括三部分,左側(cè)是半圓錐,中間是圓柱,右側(cè)的半球,利用三視圖的數(shù)據(jù)求解幾何體的體積即可.

解答 解:由三視圖知幾何體是一個組合體,包括三部分,左側(cè)是半圓錐,中間是圓柱,右側(cè)為半球,
左側(cè)是半圓錐,高為1,底面半徑為1,體積為:$\frac{1}{3}×\frac{1}{2}×{1}^{2}π×1$=$\frac{π}{6}$.
中間是圓柱,底面半徑為1,高為2,體積為:12π×2=2π,
右側(cè)的半球,半徑為1,體積為:$\frac{1}{2}×\frac{4}{3}×π×{1}^{3}$=$\frac{4π}{6}$.
∴幾何體的體積是:$\frac{17π}{6}$.
故選:A.

點評 本題考查由三視圖還原幾何體,本題解題的關(guān)鍵是看出幾何體是由幾部分組成,各個部分的長度的值,本題是一個基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.某校為了解本校學(xué)生在校小賣部的月消費情況,隨機(jī)抽取了60名學(xué)生進(jìn)行統(tǒng)計.得到如表樣本頻數(shù)分布表:
月消費金額(單位:元)[0,100)[100,200)[200,300)[300,400)[400,500)≥500
人數(shù)30691032
記月消費金額不低于300元為“高消費”,已知在樣本中隨機(jī)抽取1人,抽到是男生“高消費”的概率為$\frac{1}{6}$.
(Ⅰ)從月消費金額不低于400元的學(xué)生中隨機(jī)抽取2人,求至少有1人月消費金額不低于500元的概率;
(Ⅱ)請將下面的2×2列聯(lián)表補充完整,并判斷是否有90%的把握認(rèn)為“高消費”與“男女性別”有關(guān),說明理由.
高消費非高消費合計
男生102030
女生52530
合計154560
下面的臨界值表僅供參考:
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
(參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)f(x) 為定義在R上的偶函數(shù),當(dāng)0≤x≤2時,y=x;當(dāng)x>2時,y=f(x)的圖象是頂點在P(3,4),且過點A(2,2)的拋物線的一部分.
(1)求函數(shù)f(x) 在(-∞,2)上的解析式,并寫出函數(shù)f(x)的值域和單調(diào)區(qū)間;(值域和單調(diào)區(qū)間直接寫,不用給予證明)
(2)若f(x)<log${\;}_{\frac{1}{2}}$k+2 對x∈R恒成立,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右頂點為A,上頂點為B,離心率e=$\frac{1}{2}$,若圓x2+y2=$\frac{12}{7}$與直線AB相切.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)是否存在過右焦點F的直線l與橢圓交于M,N兩點,使得$\frac{1}{|MF|}$+$\frac{1}{|NF|}$為定值,若存在,求出該定值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知P是以F1(-1,0)為圓心,以4為半徑的圓上的動點,P與F2(1,0)所連線段的垂直平分線與線段PF1交于點M.
(Ⅰ)求點M的軌跡C的方程;
(Ⅱ)已知點E坐標(biāo)為(4,0),并且傾斜角為銳角的直線l經(jīng)過點F2(1,0)并且與曲線C相交于A,B兩點,
(。┣笞C:∠AEF2=∠BEF2;
(ⅱ)若cos∠AEB=$\frac{7}{9}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某廠生產(chǎn)A與B兩種產(chǎn)品,每公斤的產(chǎn)值分別為600元與400元,又知每生產(chǎn)1公斤A產(chǎn)品需要電力2千瓦、煤4噸;生產(chǎn)1公斤B產(chǎn)品需要電力3千瓦、煤2噸.但該廠的電力供應(yīng)不得超過100千瓦.煤最多只有120噸.問如何安排生產(chǎn)計劃(生產(chǎn)A產(chǎn)品7.5公斤、B產(chǎn)品35公斤)才能使產(chǎn)值最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求解下列關(guān)于x的不等式:(1)x2-2x+a≤0;(2)2x2-ax+2a<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某網(wǎng)絡(luò)媒體為了解其市場占有率,隨機(jī)抽取50位網(wǎng)民,調(diào)查他們是否為該網(wǎng)絡(luò)媒體的會員,結(jié)果如下:
 是否為會員
性別
 是否 
 男生 20
 女生 1015 
(I)已按性別采用分層抽樣的方式從這50位網(wǎng)民中抽取了6人,為進(jìn)一步了解他們對該媒體的滿意度,需從這6人中隨機(jī)選取2人進(jìn)行問卷調(diào)查,求選取的2人中有女生的概率;
(Ⅱ)能否在犯錯誤的概率不超過0.005的前提下認(rèn)為網(wǎng)民是否為該媒體會員與性別有關(guān)?下面的臨界值表供參考:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 0.005 0.001 
 k0 2.072 2.7063.841 5.024 6.635 7.879 10.828 
獨立性檢驗統(tǒng)計量K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.為了解某班學(xué)生喜愛打籃球是否與性別有關(guān),對本班50人進(jìn)行了問卷調(diào)查得到了如表的列聯(lián)表:
喜愛打籃球不喜愛打籃球合計
男生5
女生[來10
合計50
已知在全部50人中隨機(jī)抽取1人抽到喜愛打籃球的學(xué)生的概率為$\frac{3}{5}$.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99%的把握認(rèn)為喜愛打籃球與性別有關(guān)?說明你的理由.
參考數(shù)據(jù):χ2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
當(dāng)χ2≤2.706時,沒有充分的證據(jù)判定變量A,B有關(guān)聯(lián),可以認(rèn)為變量A,B是沒有關(guān)聯(lián)的;
當(dāng)χ2>2.706時,有90%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)χ2>3.841時,有95%的把握判定變量A,B有關(guān)聯(lián);
當(dāng)χ2>6.635時,有99%的把握判定變量A,B有關(guān)聯(lián).

查看答案和解析>>

同步練習(xí)冊答案