14.某網(wǎng)絡(luò)媒體為了解其市場占有率,隨機抽取50位網(wǎng)民,調(diào)查他們是否為該網(wǎng)絡(luò)媒體的會員,結(jié)果如下:
 是否為會員
性別
 是否 
 男生 20
 女生 1015 
(I)已按性別采用分層抽樣的方式從這50位網(wǎng)民中抽取了6人,為進一步了解他們對該媒體的滿意度,需從這6人中隨機選取2人進行問卷調(diào)查,求選取的2人中有女生的概率;
(Ⅱ)能否在犯錯誤的概率不超過0.005的前提下認(rèn)為網(wǎng)民是否為該媒體會員與性別有關(guān)?下面的臨界值表供參考:
 P(K2≥k0 0.150.10 0.05 0.025 0.010 0.005 0.001 
 k0 2.072 2.7063.841 5.024 6.635 7.879 10.828 
獨立性檢驗統(tǒng)計量K2=$\frac{{n(ad-bc)}^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

分析 (I)根據(jù)分層抽樣原理,計算從50位網(wǎng)民中抽取6人,男生、女生的人數(shù),用列舉法求出基本事件數(shù),計算對應(yīng)的概率值;
(Ⅱ)根據(jù)列聯(lián)表計算觀測值K2,對照臨界表即可得出結(jié)論.

解答 解:(I)根據(jù)分層抽樣原理,從50位網(wǎng)民中抽取6人,男生有3人,
可記為A、B、C,女生有3人,可記為d、e、f,
現(xiàn)從這6人中隨機選取2人,
基本事件是AB、AC、Ad、Ae、Af、BC、Bd、Be、Bf、Cd、Ce、Cf、de、df、ef共15種,
選取的2人中有女生的是Ad、Ae、Af、Bd、Be、Bf、Cd、Ce、Cf、de、df、ef共12種,
故所求的概率為P=$\frac{12}{15}$=$\frac{4}{5}$;
(Ⅱ)根據(jù)列聯(lián)表,計算觀測值K2=$\frac{50{×(20×15-10×5)}^{2}}{25×25×30×20}$≈8.333>7.879,
對照臨界表知,在犯錯誤的概率不超過0.005的前提下認(rèn)為網(wǎng)民是否為該媒體會員與性別有關(guān).

點評 本題考查了分層抽樣原理與古典概型的概率計算問題,也考查了獨立性檢驗的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.將y=$\frac{2}{x}$的圖象沿x軸方向左平移2個單位,再沿y軸方向向下平移1個單位,所得到的函數(shù)解析式為y=-$\frac{x}{x+2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{17π}{6}$B.$\frac{17π}{3}$C.D.$\frac{13π}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.以下關(guān)于二面角的命題中,正確的有①④.
①若一個平面與二面角的棱垂直,則該平面與二面角的兩個半平面的交線所成的角就是二面角的平面角;
②二面角α-l-β的大小為θ1,m,n為直線且m⊥α,n⊥β,m與n所成的角為θ2,則θ12=π;
③一個二面角的兩個半平面分別垂直于另一個二面角的兩個半平面,則這兩個二面角的平面角相等或者互補; 
④三棱錐側(cè)面與側(cè)面所成的二面角都相等且底面是正三角形,則該三棱錐一定是正三棱錐.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=a-$\frac{1}{x}$-lnx,g(x)=ex-ex+1.
(Ⅰ)若a=2,求函數(shù)f(x)在點(1,f(1))處的切線方程;
(Ⅱ)若f(x)=0恰有一個解,求a的值;
(Ⅲ)若g(x)≥f(x)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,四邊形ABCD中,AB=AC=AD,AH⊥CD于H,BD交AH于P,且PC⊥BC
(Ⅰ)求證:A,B,C,P四點共圓;
(Ⅱ)若∠CAD=$\frac{π}{3}$,AB=1,求四邊形ABCP的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知關(guān)于x的方程4x2+4(k+2)x+(2k2+2k+1)=0的兩實根為α,β,則(α+1)(β+1)的取值范圍是[-$\frac{7}{8}$,$\frac{9}{4}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.過點P(2,1)作圓x2+y2=1的兩條切線PA,PB,其中A、B為切點,求直線AB方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,∠BAD=60°,AB=4,AD=2,側(cè)棱PB=$\sqrt{15}$,PD=$\sqrt{3}$.
(1)求證:BD⊥平面PAD;
(2)若PD與底面ABCD成60°的角,試求二面角P-BC-A所成的平面角的正切值.

查看答案和解析>>

同步練習(xí)冊答案