【題目】已知定義在R的函數(shù) 是偶函數(shù),且滿足 上的解析式為 ,過點(diǎn) 作斜率為k的直線l , 若直線l與函數(shù) 的圖象至少有4個公共點(diǎn),則實(shí)數(shù)k的取值范圍是
A.
B.
C.
D.

【答案】C
【解析】根據(jù)題意知道函數(shù) 是偶函數(shù),且滿足 ,故函數(shù)還是周期為4的函數(shù),根據(jù)表達(dá)式畫出圖像是定義在R上的周期性的圖像,一部分是開口向下的二次函數(shù),一部分是一次函數(shù),當(dāng)k>0時,根據(jù)題意知兩圖像有兩個交點(diǎn),當(dāng)直線 和圖像 , ,相切時是一種臨界,要想至少有4個交點(diǎn),斜率要變;故設(shè)切點(diǎn)為
當(dāng)k<0時,臨界是過點(diǎn)(-6,1)時,此時 ,要想至少有4個交點(diǎn)需要逆時針繼續(xù)旋轉(zhuǎn),斜率邊大,直到和x軸平行。故兩種情況并到一起得到:實(shí)數(shù)k的取值范圍是 。
故答案為:C。
以題意得出函數(shù)的周期為4,由解析式作出圖象為一部分是開口向下的二次函數(shù),一部分是一次函數(shù),結(jié)合直線可討論出實(shí)數(shù)k的取值范圍.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 為△ 所在平面外一點(diǎn),且 , , 兩兩垂直,則下列結(jié)論:① ;② ;③ ;④ .其中正確的是( )
A.①②③
B.①②④
C.②③④
D.①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知兩個定點(diǎn) ,動點(diǎn)P滿足 .設(shè)動點(diǎn)P的軌跡為曲線E,直線 .
(1)求曲線E的軌跡方程;
(2)若l與曲線E交于不同的C,D兩點(diǎn),且 (O為坐標(biāo)原點(diǎn)),求直線l的斜率;
(3)若 是直線l上的動點(diǎn),過Q作曲線E的兩條切線QM,QN,切點(diǎn)為M,N,探究:直線MN是否過定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) , .
(1)求 的定義域;
(2)判斷并證明 的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】f(x)=Acos(ωx+φ)(A,ω>0)的圖象如圖所示,為得到g(x)=﹣Asin(ωx+ )的圖象,可以將f(x)的圖象(
A.向右平移 個單位長度
B.向右平移 個單位長度
C.向左平移 個單位長度
D.向左平移 個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)+kx與g(x)=log4(a2x a),其中f(x)是偶函數(shù).
(1)求實(shí)數(shù)k的值;
(2)求函數(shù)g(x)的定義域;
(3)若函數(shù)f(x)與g(x)的圖象有且只有一個公共點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在 上的奇函數(shù) 滿足: ,且在區(qū)間 上單調(diào)遞減,則不等式 的解集是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)若 ,求 在區(qū)間 上的最小值;
(2)若 在區(qū)間 上有最大值 ,求實(shí)數(shù) 的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知f(x)是定義在R上的奇函數(shù),且當(dāng)x∈(0,+∞)時,f(x)=2018x+log2018x,則函數(shù)f(x)的零點(diǎn)個數(shù)是(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步練習(xí)冊答案