A. | (2,+∞) | B. | (0,2) | C. | (-4,+∞) | D. | (-∞,-4) |
分析 由定積分計算公式,結(jié)合微積分基本定理算出F(x).再利用導數(shù),研究F′(x)的正負,即可得到函數(shù)F(x)的單調(diào)增區(qū)間是(2,+∞).
解答 解:依題意得,F(xiàn)(x)=${∫}_{0}^{x}$(t2+2t-8)dt=($\frac{1}{3}$t3+t2-8t)${|}_{0}^{x}$=$\frac{1}{3}$x3+x2-8x,
∴F′(x)=x2+2x-8,
令F′(x)>0,得x>2或x<-4; 且函數(shù)定義域是(0,+∞),
∴函數(shù)F(x)的單調(diào)增區(qū)間是(2,+∞),
故選:A.
點評 本題利用定積分求一個函數(shù)的原函數(shù),并研究原函數(shù)的單調(diào)問題.著重考查了定積分計算公式.
科目:高中數(shù)學 來源: 題型:選擇題
A. | [9,+∞) | B. | [-$\frac{1}{3}$,+∞) | C. | [-$\frac{5}{3}$,+∞) | D. | [-$\frac{1}{3}$,9] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{3}{5}$,-$\frac{4}{5}$) | B. | (0,1) | C. | (3,4) | D. | ($\frac{4}{5}$,$\frac{3}{5}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (1,4) | B. | (2,4) | C. | (1,2) | D. | (1,+∞) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com