8.設(shè)函數(shù)f(x)=|kx-1|(k∈R).
(Ⅰ)若不等式f(x)≤2的解集為$\left\{{x|-\frac{1}{3}≤x≤1}\right\}$,求k的值;
(Ⅱ)若f(1)+f(2)<5,求k的取值范圍.

分析 (Ⅰ)利用不等式的解集與方程解的關(guān)系,根據(jù)不等式f(x)≤2的解集為$\left\{{x|-\frac{1}{3}≤x≤1}\right\}$,即可求k的值;
(Ⅱ)若f(1)+f(2)<5,則|k-1|+|2k-1|<5,分類討論求k的取值范圍.

解答 解:(Ⅰ)∵不等式f(x)≤2的解集為$\left\{{x|-\frac{1}{3}≤x≤1}\right\}$,
∴|-$\frac{1}{3}$k-1|=2且|k-1|=2,
∴k=3;
(Ⅱ)若f(1)+f(2)<5,則|k-1|+|2k-1|<5.
k<$\frac{1}{2}$時,-k+1-2k+1<5,∴k>-1,∴-1<k<$\frac{1}{2}$;
$\frac{1}{2}$≤k≤1時,-k+1+2k-1<5,∴k<5,∴$\frac{1}{2}$≤k≤1;
k>1時,k-1+2k-1<5,∴k<$\frac{7}{3}$,∴1<k<$\frac{7}{3}$,
綜上所述,-1<k<$\frac{7}{3}$.

點評 本題考查絕對值不等式的解法,考查分類討論的數(shù)學(xué)思想,考查學(xué)生分析解決問題的能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.解不等式:|x-4|-|x-2|>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)f(x)=ln(1+3x+9xa),對于任意的a∈R,若當(dāng)x∈(-∞,0]時,f(x)恒有意義,則實數(shù)a的取值范圍是( 。
A.(-∞,2)B.(-∞,2]C.[-2,+∞)D.(-2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.在某個旅游城市里,每年各個月份隨著游客數(shù)量的變化,從事旅游服務(wù)工作的人數(shù)也會發(fā)生相應(yīng)的變化.由政府部門的統(tǒng)計數(shù)據(jù)可知,該城市每月從事旅游服務(wù)工作的人數(shù)f(n)(單位:千人)可近似地用函數(shù)f(n)=Acos(ωn+φ)+k表示,其中n(n∈[1,12],n∈N*)表示月份(如n=1表示1月份),且A>0,ω≠0.經(jīng)測算,在過去的一年中,f(n)=$\frac{3}{2}$cos[$\frac{π}{6}$(n+2)]+$\frac{28}{5}$.
(1)在過去的一年中,該城市哪個月份從事旅游服務(wù)的人數(shù)最少?最少時有多少人?
(2)在過去的一年中,該城市從幾月份到幾月份從事旅游服務(wù)工作的人數(shù)持續(xù)增加?
(3)假設(shè)今年該城市的某個旅游景點因環(huán)境破壞嚴重而被迫關(guān)閉,那么在此期間,對于函數(shù)f(n)=Acos(ωn+φ)+k(A>0,ω≠0)中的A,ω,φ,k四個量,哪個(或哪些)量的值最有可能減小,(忽略其他因素的影響)?試說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在三棱錐P-ABC中,PA⊥面ABC,∠BAC=120°,且AB=AC=AP=1,M為PB的中點,N在BC上,且BN=$\frac{1}{3}$BC.
(1)求證:MN⊥AB;
(2)求平面MAN與平面PAN所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若關(guān)于x的不等式|ax+2|<3的解集為{x|-$\frac{5}{4}$<x<$\frac{1}{4}$},則實數(shù)a的值為(  )
A.4B.-$\frac{4}{5}$C.-20D.-25

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=ex+x-4的零點所在的區(qū)間為( 。
A.(-1,0)B.(0,1)C.(1,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖甲,圓O的直徑AB=2,圓上兩點C,D在直徑AB的兩側(cè),使∠CAB=$\frac{π}{4}$,∠DAB=$\frac{π}{3}$,沿直徑AB折起,使兩個半圓所在的平面互相垂直(如圖乙),F(xiàn)為BC的中點,根據(jù)圖乙解答下列各題:
(1)求點B到平面ACD的距離;
(2)如圖:若∠DOB的平分線交$\widehat{BD}$于一點G,試判斷FG是否與平面ACD平行?并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知圓C:(x-a)2+(y-b)2=1(a>1)關(guān)于直線y=x+1對稱,直線x+y-4=0交圓C與A,B兩點,且|AB|=$\sqrt{2}$.
(1)求圓C的方程;
(2)若直線l:y=kx+2與圓C交于M,N兩點,是否存在直線l,使得$\overrightarrow{OM}$•$\overrightarrow{ON}$=6(O為坐標(biāo)原點),若存在,求出k的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案