19.在等比數(shù)列{an}中,如果a5和a9是一元二次方程x2+7x+9=0的兩個(gè)根,則a4•a7•a10的值為(  )
A.-27B.27C.±27D.±81

分析 由a5和a9是一元二次方程x2+7x+9=0的兩個(gè)根,利用韋達(dá)定理得到a5和a9的積為9,根據(jù)等比數(shù)列的性質(zhì)可知,項(xiàng)數(shù)之和相等的兩項(xiàng)之積等于兩項(xiàng)數(shù)和一半的那項(xiàng)的平方,得到a7的值,然后再利用等比數(shù)列的性質(zhì)化簡(jiǎn)所求的式子得到a7的立方,把a(bǔ)7的值代入即可求出值.

解答 解:因?yàn)閍5和a9是一元二次方程x2+7x+9=0的兩個(gè)根,
所以a5a9=9,a5+a9=-7,故a7是負(fù)數(shù),
∴a72=9,a7=-3,
則a4•a7•a10=a73=(-3)3=-27.
故選:A.

點(diǎn)評(píng) 此題考查學(xué)生掌握等比數(shù)列的性質(zhì),靈活運(yùn)用韋達(dá)定理化簡(jiǎn)求值,是一道綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若C7x=C65+C64,則x=5或2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.如圖,A,B,D三點(diǎn)共線,以AB為直徑的圓與以BD為半徑的圓交于E,F(xiàn),DH切圓B于點(diǎn)D,DH交AF于H.
(1)求證:AB•AD=AF•AH.
(2)若AB-BD=2,AF=2$\sqrt{2}$,求△BDF外接圓的半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.某高中為適應(yīng)“新高考模式改革”,滿足不同層次學(xué)生的需要,決定從高一年級(jí)開始,在每周的周二、周四、周五的課外活動(dòng)期間同時(shí)開設(shè)物理、化學(xué)、生物和信息技術(shù)輔導(dǎo)講座,每位有興趣的同學(xué)可以在任何一天參加任何一門科目的輔導(dǎo)講座,也可以放棄任何一門科目的輔導(dǎo)講座(規(guī)格:各科達(dá)到預(yù)定的人數(shù)時(shí)稱為滿座,否則稱為不滿座),統(tǒng)計(jì)數(shù)據(jù)表明,以上各學(xué)科講座各天滿座的概率如表:
 物理化學(xué)生物信息技術(shù)
周二 $\frac{3}{4}$ $\frac{1}{2}$ $\frac{2}{3}$ $\frac{1}{4}$
周四 $\frac{1}{2}$ $\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{2}$
周五 $\frac{2}{3}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{3}$
(1)求一周內(nèi)物理輔導(dǎo)講座在周二、周四、周五都不滿座的概率;
(2)設(shè)周四各輔導(dǎo)講座的科目數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,在四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為梯形,AB∥DC,AB⊥BC,AB=BC=PA=1,CD=2,點(diǎn)E在棱PB上,且PE=2EB.
(1)求證:PD∥平面EAC;
(2)求證:平面APD⊥平面EAC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.不等式|x+2|>3的解集是( 。
A.(-∞,-5)∪(1,+∞)B.(-5,1)C.(-∞,-1)∪(5,+∞)D.(-1,5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.表中數(shù)據(jù)是我國(guó)各種能源消費(fèi)量占當(dāng)年能源消費(fèi)總量的百分率,由表可知,從2011年到2014年,消費(fèi)量占比增長(zhǎng)率最大的能源是( 。
我國(guó)各種能源消費(fèi)的百分率
原油(%)天然氣(%)原煤(%)核能(%)水力發(fā)電(%)再生能源(%)
2011年17.74.570.40.76.00.7
2014年17.55.666.01.08.11.8
A.天然氣B.核能C.水力發(fā)電D.再生能源

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.l1:ax+2y+6=0,l2:x+(a+1)y+a2-1=0,l1⊥l2,則a=-$\frac{2}{3}$;l1∥l2,則a=1或-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖,四棱錐P-ABCD中,底面ABCD的邊長(zhǎng)為4的菱形,PD=PB=4,∠BAD=60°,E為PA中點(diǎn).
(1)求證:BD⊥平面PAC;
(2)若PA=PC,求三棱錐E-ABC的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案