14.容量為100的樣本數(shù)據(jù)被分為6組,如表
組號(hào)123456
頻數(shù)1417x201615
第3組的頻率是( 。
A.0.15B.0.16C.0.18D.0.20

分析 通過讀取圖表得到第3租的頻數(shù),然后直接由頻數(shù)除以樣本容量求解.

解答 解:由圖表可知,第3組的頻數(shù)為100-14-17-20-16-15=18;
∴第3組的頻率為$\frac{18}{100}$=0.18.
故選:C.

點(diǎn)評(píng) 本題考查了頻率分布表,考查樣本容量、頻數(shù)和頻率之間的關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=|x+$\frac{1}{x}$|+|x-$\frac{1}{x}$|.
(Ⅰ)判斷該函數(shù)的奇偶性,并證明你的結(jié)論;
(Ⅱ)利用絕對(duì)值及分段函數(shù)知識(shí),將函數(shù)解析式寫成分段函數(shù)形式(不需過程),然后在給定的坐標(biāo)系中畫出函數(shù)圖象(不需列表);
(Ⅲ)若函數(shù)f(x)在區(qū)間[a-1,2]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知F1、F2 是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0):的左、右焦點(diǎn),點(diǎn)Q(-$\sqrt{2}$,1)在橢圓上,線段QF2 與y軸的交點(diǎn)M,且點(diǎn)M為QF2 中點(diǎn)
(1)求橢圓C的方程;
(2)設(shè)P為橢圓C上一點(diǎn),且∠F1PF2=$\frac{π}{2}$,求△F1PF2 的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.過點(diǎn)A(2,0)且與圓x2+4x+y2-32=0內(nèi)切的圓的圓心的軌跡方程為$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.在R上定義運(yùn)算?:x?y=(1-x)(1+y)若不等式(x-a)?(x+a)<1對(duì)任意實(shí)數(shù)x成立,則( 。
A.-1<a<1B.-2<a<0C.0<a<2D.-$\frac{3}{2}$<α<$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若一個(gè)扇形的周長(zhǎng)是其半徑的4倍,則該扇形的圓心角為( 。
A.2radB.C.4radD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知f(α)=$\frac{cos(π-α)cos(\frac{3π}{2}+α)}{sin(α-π)}$
(1)化簡(jiǎn)f(α);
(2)若α為第二象限角,且cos(α-$\frac{π}{2}$)=$\frac{3}{5}$,求f(α)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知圓C過點(diǎn)A(8,0),B(0,6),O(0,0)
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)過點(diǎn)P(-1,0)作圓C的切線,求切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知向量$\overrightarrow m$=(λ+1,1),$\overrightarrow n$=(4,-2),若$\overrightarrow m∥\overrightarrow n$,則λ=-3.

查看答案和解析>>

同步練習(xí)冊(cè)答案