Processing math: 100%
14.設(shè)離散型隨機(jī)變量X的分布列為
X123
PP1P2P3
則EX=2的充要條件是(  )
A.P1=P2B.P2=P3C.P1=P3D.P1=P2=P3

分析 當(dāng)EX=2時(shí),由離散型隨機(jī)變量X的分布列的性質(zhì)列出方程組得P1=P3,當(dāng)P1=P3時(shí),P1+P2+P3=2P1+P2=1能求出EX=2.從而得到EX=2的充要條件是P1=P3

解答 解:由離散型隨機(jī)變量X的分布列知:
當(dāng)EX=2時(shí),{P1+P2+P3=1P1+2P2+3P3=2,解得P1=P3
當(dāng)P1=P3時(shí),P1+P2+P3=2P1+P2=1.
EX=P1+2P2+3P3=4P1+2P2=2.
∴EX=2的充要條件是P1=P3
故選:C.

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量的數(shù)學(xué)期望為2的充要條件的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意離散型隨機(jī)變量的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.南宋數(shù)學(xué)家楊輝研究了垛積與各類多面體體積的聯(lián)系,由多面體體積公式導(dǎo)出相應(yīng)的垛積術(shù)公式.例如方亭(正四梭臺(tái))體積為V=h3(a2+b2+ab)其中a為上底邊長(zhǎng),b為下底邊長(zhǎng),h為高.楊輝利用沈括隙積術(shù)的基礎(chǔ)上想到:若由大小相等的圓球垛成類似于正四棱臺(tái)的方垛,上底由a×a個(gè)球組成,以下各層的長(zhǎng)、寬依次各增加一個(gè)球,共有n層,最下層(即下底)由b×b個(gè)球組成,楊輝給出求方垛中物體總數(shù)的公式如下:S=n3(a2+b2+ab+ba2).根據(jù)以上材料,我們可得12+22+…+n2=nn+12n+16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知復(fù)數(shù)z=1+ai1i(a∈R)的虛部為1,則a=( �。�
A.1B.-1C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.《數(shù)學(xué)九章》中對(duì)已知三角形三邊長(zhǎng)求三角形的面積的求法填補(bǔ)了我國(guó)傳統(tǒng)數(shù)學(xué)的一個(gè)空白,與著名的海倫公式完全等價(jià),由此可以看出我國(guó)古代已具有很高的數(shù)學(xué)水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實(shí).一為從隔,開平方得積.”若把以上這段文字寫成公式,即S=14[c2a2c2+a2222].現(xiàn)有周長(zhǎng)為22+5的△ABC滿足sinA:sinB:sinC=(2-1):5:(2+1),試用以上給出的公式求得△ABC的面積為( �。�
A.34B.32C.54D.52

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知數(shù)列{an}是等差數(shù)列,a1=tanπ4,a5=13a1,設(shè)Sn為數(shù)列{(-1)nan}的前n項(xiàng)和,則S2016=( �。�
A.2016B.-2016C.3024D.-3024

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在等差數(shù)列{an}中,若a22+2a2a8+a6a10=16,則a4a6=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.實(shí)驗(yàn)測(cè)得五組(x,y)的值是(1,2)(2,4)(3,4)(4,7)(5,8),若線性回歸方程為y=0.7x+a,則a的值是( �。�
A.1.4B.1.9C.2.2D.2.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=2sin2x+1cos2x的最小值是3+22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.從集合{12,13,2,3}中任取一個(gè)數(shù)記做a,從集合{-2,-1,1,2}中任取一個(gè)數(shù)記做b,則函數(shù)y=ax+b的圖象經(jīng)過第三象限的概率是38

查看答案和解析>>

同步練習(xí)冊(cè)答案