6.為美化環(huán)境,從紅、黃、白、紫4種顏色的花中任選2種花種在一個花壇中,余下的2種花種在另一個花壇中,則紅色和紫色的花不在同一花壇的概率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 確定基本事件的個數(shù),利用古典概型的概率公式,可得結(jié)論.

解答 解:從紅、黃、白、紫4種顏色的花中任選2種花種在一個花壇中,余下的2種花種在另一個花壇中,有${C}_{4}^{2}$=6種方法,紅色和紫色的花在同一花壇,有2種方法,紅色和紫色的花不在同一花壇,有4種方法,所以所求的概率為$\frac{4}{6}$=$\frac{2}{3}$.
故選:C.

點(diǎn)評 本題考查等可能事件的概率計(jì)算與分步計(jì)數(shù)原理的應(yīng)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知2cosC(acosB+bcosA)=c.
(Ⅰ)求C;
(Ⅱ)若c=$\sqrt{7}$,△ABC的面積為$\frac{3\sqrt{3}}{2}$,求△ABC的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知x,y∈R,且x>y>0,則(  )
A.$\frac{1}{x}$-$\frac{1}{y}$>0B.sinx-siny>0C.($\frac{1}{2}$)x-($\frac{1}{2}$)y<0D.lnx+lny>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某學(xué)校運(yùn)動會的立定跳遠(yuǎn)和30秒跳繩兩個單項(xiàng)比賽分成預(yù)賽和決賽兩個階段,表中為10名學(xué)生的預(yù)賽成績,其中有三個數(shù)據(jù)模糊.
學(xué)生序號  2 4 6 8 10
 立定跳遠(yuǎn)(單位:米) 1.961.92 1.82 1.80 1.78 1.76 1.74 1.72 1.68 1.60
 30秒跳繩(單位:次) 63 7560  6372 70a-1  b65 
在這10名學(xué)生中,進(jìn)入立定跳遠(yuǎn)決賽的有8人,同時(shí)進(jìn)入立定跳遠(yuǎn)決賽和30秒跳繩決賽的有6人,則( 。
A.2號學(xué)生進(jìn)入30秒跳繩決賽B.5號學(xué)生進(jìn)入30秒跳繩決賽
C.8號學(xué)生進(jìn)入30秒跳繩決賽D.9號學(xué)生進(jìn)入30秒跳繩決賽

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,在四棱錐P-ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
(1)求證:DC⊥平面PAC;(2)求證:平面PAB⊥平面PAC;
(3)設(shè)點(diǎn)E為AB的中點(diǎn),在棱PB上是否存在點(diǎn)F,使得PA∥平面CEF?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若函數(shù)f(x)=x-$\frac{1}{3}$sin2x+asinx在(-∞,+∞)單調(diào)遞增,則a的取值范圍是(  )
A.[-1,1]B.[-1,$\frac{1}{3}}$]C.[-$\frac{1}{3}$,$\frac{1}{3}}$]D.[-1,-$\frac{1}{3}}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在直角坐標(biāo)系xOy中,直線l:y=t(t≠0)交y軸于點(diǎn)M,交拋物線C:y2=2px(p>0)于點(diǎn)P,M關(guān)于點(diǎn)P的對稱點(diǎn)為N,連結(jié)ON并延長交C于點(diǎn)H.
(Ⅰ)求$\frac{{|{OH}|}}{{|{ON}|}}$;
(Ⅱ)除H以外,直線MH與C是否有其它公共點(diǎn)?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{|x|,x≤m}\\{{x}^{2}-2mx+4m,x>m}\end{array}\right.$,其中m>0,若存在實(shí)數(shù)b,使得關(guān)于x的方程f(x)=b有三個不同的根,則m的取值范圍是(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{x-y+2≥0}\\{2x+3y-6≥0}\\{3x+2y-9≤0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+5y的最小值為(  )
A.-4B.6C.10D.17

查看答案和解析>>

同步練習(xí)冊答案