分析 (Ⅰ)已知等式利用正弦定理化簡(jiǎn),整理后利用兩角和與差的正弦函數(shù)公式及誘導(dǎo)公式化簡(jiǎn),根據(jù)sinC不為0求出cosC的值,即可確定出出C的度數(shù);
(2)利用余弦定理列出關(guān)系式,利用三角形面積公式列出關(guān)系式,求出a+b的值,即可求△ABC的周長(zhǎng).
解答 解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0
已知等式利用正弦定理化簡(jiǎn)得:2cosC(sinAcosB+sinBcosA)=sinC,
整理得:2cosCsin(A+B)=sinC,
即2cosCsin(π-(A+B))=sinC
2cosCsinC=sinC
∴cosC=$\frac{1}{2}$,
∴C=$\frac{π}{3}$;
(Ⅱ)由余弦定理得7=a2+b2-2ab•$\frac{1}{2}$,
∴(a+b)2-3ab=7,
∵S=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab=$\frac{3\sqrt{3}}{2}$,
∴ab=6,
∴(a+b)2-18=7,
∴a+b=5,
∴△ABC的周長(zhǎng)為5+$\sqrt{7}$.
點(diǎn)評(píng) 此題考查了正弦、余弦定理,三角形的面積公式,以及三角函數(shù)的恒等變形,熟練掌握定理及公式是解本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x=$\frac{kπ}{2}$-$\frac{π}{6}$(k∈Z) | B. | x=$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z) | C. | x=$\frac{kπ}{2}$-$\frac{π}{12}$(k∈Z) | D. | x=$\frac{kπ}{2}$+$\frac{π}{12}$(k∈Z) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=2sin(2x-$\frac{π}{6}$) | B. | y=2sin(2x-$\frac{π}{3}$) | C. | y=2sin(x+$\frac{π}{6}$) | D. | y=2sin(x+$\frac{π}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{2}{3}$ | D. | $\frac{5}{6}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com