1.設(shè)全集U=R,集合A={x|0<x≤3},B={x|x2<4},則集合∁U(A∪B)等于( 。
A.(-∞,-2]B.(-∞,0]∪[2,+∞)C.(3,+∞)D.(-∞,-2]∪(3,+∞)

分析 求出集合B,求出A∪B,進(jìn)而求出答案.

解答 解:∵A={x|0<x≤3}=(0,3],B={x|x2<4}=(-2,2)
∴A∪B=(-2,3],
故CU(A∪B)=(-∞,-2]∪(3,+∞)
故選:D

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是集合交、并、補(bǔ)集的混合運(yùn)算,其中根據(jù)已知條件求出A∪B,是解答本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=ex-x+a,g(x)=e-x+x+a2,a∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若存在x∈[0,2],使得f(x)-g(x)<0成立,求a的取值范圍;
(3)設(shè)x1,x2(x1≠x2)是函數(shù)f(x)的兩個(gè)零點(diǎn),求證x1+x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知定義在R上的函數(shù)f(x)滿足xf′(x)-f(x)>0,當(dāng)0<m<n<1時(shí),下面選項(xiàng)中最大的一項(xiàng)是(  )
A.$\frac{f({m}^{n})}{{m}^{n}}$B.logmn•f(lognm)C.$\frac{f({n}^{m})}{{n}^{m}}$D.lognm•f(logmn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知正整數(shù)a1,a2,a3,…,a18滿足a1<a2<…<a18,a1+a2+a3+…+a18=2011,則a9的最大值為193.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.函數(shù)f(x)=2sin(ωx+φ)(?>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的圖象如圖所示.,若$\overrightarrow{PQ}$•$\overrightarrow{QR}$=$\frac{{π}^{2}}{16}$-4,為了得到函數(shù)f(x)的圖象只要把函數(shù)y=2sinx圖象上所有的點(diǎn)( 。
A.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,再向左平移$\frac{π}{3}$個(gè)單位
B.橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,再向左平移$\frac{π}{6}$個(gè)單位
C.橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再向左平移$\frac{π}{3}$個(gè)單位
D.橫坐標(biāo)伸長(zhǎng)到原來的2倍,縱坐標(biāo)不變,再向左平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,在斜四棱柱ABCD-A1B1C1D1中,底面ABCD是邊長(zhǎng)為2$\sqrt{3}$的菱形,且∠BAD=$\frac{π}{3}$,若∠AA1C=$\frac{π}{2}$,且A1在底面ABCD上射影為△ABD的重心G.
(1)求證:平面ACC1A1⊥平面BDD1B1;
(2)求直線CC1與平面A1BC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知x,y滿足不等式組$\left\{\begin{array}{l}{x-3y+2≥0}\\{x+y-6≤0}\\{y≥1}{\;}\end{array}\right.$,若目標(biāo)函數(shù)z=x+ay取得最小值的最優(yōu)解有無數(shù)個(gè),則a=-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知拋物線y2=8x的焦點(diǎn)恰好是雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{3}$=1的右焦點(diǎn),則雙曲線的漸近線方程為y=±$\sqrt{3}$x.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.中國(guó)南海某島駐島部隊(duì)的地面雷達(dá)搜索半徑為200海里,外國(guó)一海洋測(cè)量船正在該海島正東250海里處以每小時(shí)20海里的速度沿西北方向航行,問該海島雷達(dá)能否發(fā)現(xiàn)該外國(guó)測(cè)量船,如能,求能觀測(cè)到該測(cè)量船的時(shí)間長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案