分析 由已行求出GH=5$\sqrt{2}$,AB=5,BE=5$\sqrt{3}$,GI=$\frac{5\sqrt{2}}{2}$,F(xiàn)I=$\frac{5\sqrt{6}}{2}$,由此利用兩個(gè)四分之一圓面積之和減去兩個(gè)直角三角形面積之和,能求出陰影部分面積.
解答 解:∵兩個(gè)四分之一圓面ACD和GCH交于點(diǎn)C點(diǎn),AD=CH=10厘米,
∠EAB=∠FGC=60°,EB與FI分別垂直于AC和GC,
∴GH=$\sqrt{\frac{100}{2}}$=5$\sqrt{2}$,AB=10cos60°=5,BE=10×sin60°=5$\sqrt{3}$,
GI=5$\sqrt{2}cos60°$=$\frac{5\sqrt{2}}{2}$,F(xiàn)I=5$\sqrt{2}$sin60°=$\frac{5\sqrt{6}}{2}$,
∴S陰=$\frac{1}{4}π[1{0}^{2}+(5\sqrt{2})^{2}]$-$\frac{1}{2}×5×5\sqrt{3}-\frac{1}{2}×\frac{5\sqrt{2}}{2}×\frac{5\sqrt{6}}{2}$≈85.28.
故答案為:85.28.
點(diǎn)評(píng) 本題考查陰影部分面積的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意圓的面積公式的合理運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | x-2y-3=0 | B. | x-2y+3=0 | C. | 2x-y+3=0 | D. | 以上都不正確 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-1,2] | B. | [-1,0] | C. | [1,2] | D. | [0,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y=sin(x+$\frac{π}{6}$) | B. | y=sin(x-$\frac{π}{6}$) | C. | y=sinx+$\frac{π}{6}$ | D. | y=sinx-$\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com