分析 由條件利用同角三角函數(shù)的基本關(guān)系,兩角和差的三角公式求得cos($\frac{α+β}{2}$)=cos[(α-$\frac{β}{2}$)-($\frac{α}{2}$-β)]的值,再利用二倍角的余弦公式求得cos(α+β)的值.
解答 解:∵$cos({α-\frac{β}{2}})=-\frac{3}{5}$<0,$sin({\frac{α}{2}-β})=\frac{12}{13}$>0,且$\frac{π}{2}<α<π$,$0<β<\frac{π}{2}$,∴α-$\frac{β}{2}$為鈍角,sin(α-$\frac{β}{2}$)=$\sqrt{{1-cos}^{2}(α-\frac{β}{2})}$=$\frac{4}{5}$,
$\frac{α}{2}$-β為銳角,cos($\frac{α}{2}$-β)=$\sqrt{{1-sin}^{2}(\frac{α}{2}-β)}$=$\frac{5}{13}$,
求cos($\frac{α+β}{2}$)=cos[(α-$\frac{β}{2}$)-($\frac{α}{2}$-β)]=cos(α-$\frac{β}{2}$)cos($\frac{α}{2}$-β)+sin(α-$\frac{β}{2}$)sin($\frac{α}{2}$-β)=-$\frac{3}{5}$•$\frac{5}{13}$+$\frac{4}{5}•$$\frac{12}{13}$=$\frac{33}{65}$,
∴cos(α+β)=2${cos}^{2}\frac{α+β}{2}$-1=-$\frac{2047}{4225}$.
點(diǎn)評(píng) 本題主要考查同角三角函數(shù)的基本關(guān)系,兩角和差的三角公式的應(yīng)用,二倍角的余弦公式,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 有且只有一個(gè)根2 | B. | 不僅有根2還有其他根 | ||
C. | 有根2和另一個(gè)負(fù)根 | D. | 有根2和另一個(gè)正根 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | 1 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
x | 1 | 2 | 2 | 3 |
y | 2 | 4 | 4 | 6 |
A. | 2 | B. | 3 | C. | 2.1 | D. | 3.1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com