函數(shù)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/d8/4/1qofq2.png" style="vertical-align:middle;" />(a為實(shí)數(shù)),
(1)當(dāng)時(shí),求函數(shù)的值域。
(2)若函數(shù)在定義域上是減函數(shù),求a的取值范圍
(3)求函數(shù)在上的最大值及最小值。
(1)(2)(3)無(wú)最大值,最小值為
解析試題分析:(1)當(dāng)時(shí),符合基本不等式“一正,二定,三相等”的條件,固可用基本不等式求函數(shù)最值(2)利用函數(shù)單調(diào)性的定義求出時(shí)只要即可,轉(zhuǎn)化為恒成立問(wèn)題。利用求出的范圍即可求得范圍。(3)分類(lèi)討論時(shí)函數(shù)在上單調(diào)遞增,無(wú)最小值。由(2)得當(dāng)時(shí),在上單調(diào)遞減,無(wú)最大值,當(dāng)時(shí),利用對(duì)勾函數(shù)分析其單調(diào)性求最值。具體過(guò)程詳見(jiàn)解析
試題解析:(1)當(dāng)時(shí),,當(dāng)且僅當(dāng) 時(shí)取, 所以值域?yàn)?
(2)若在定義域上是減函數(shù),則任取且都有成立,即 只要即可 由且
故
(3)當(dāng)時(shí),函數(shù)在上單調(diào)遞增,無(wú)最小值,當(dāng)時(shí),
由(2)得當(dāng)時(shí),在上單調(diào)遞減,無(wú)最大值,當(dāng)時(shí),
當(dāng)時(shí),此時(shí)函數(shù)在上單調(diào)遞減,
在上單調(diào)遞增,無(wú)最大值,
考點(diǎn):(1)函數(shù)的單調(diào)性(2)利用函數(shù)單調(diào)性求最值問(wèn)題
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
定義:對(duì)于函數(shù),若在定義域內(nèi)存在實(shí)數(shù),滿(mǎn)足,則稱(chēng)為“局部奇函數(shù)”.
(1)已知二次函數(shù),試判斷是否為定義域上的“局部奇函數(shù)”?若是,求出滿(mǎn)足的的值;若不是,請(qǐng)說(shuō)明理由;
(2)若是定義在區(qū)間上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍;
(3)若為定義域上的“局部奇函數(shù)”,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)
(1)當(dāng)時(shí),求函數(shù)的定義域;
(2)若函數(shù)的定義域?yàn)镽,試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(I)若函數(shù)為奇函數(shù),求實(shí)數(shù)的值;
(II)若對(duì)任意的,都有成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的定義域;
(2)若函數(shù)在上單調(diào)遞增,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)是奇函數(shù),且.
(1)求實(shí)數(shù)的值;
(2)判斷函數(shù)在上的單調(diào)性,并用定義加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(1)若,是否存在、,使為偶函數(shù),如果存在,請(qǐng)舉例并證明你的結(jié)論,如果不存在,請(qǐng)說(shuō)明理由;
(2)若,,求在上的單調(diào)區(qū)間;
(3)已知,對(duì),,有成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)。
(Ⅰ)若且對(duì)任意實(shí)數(shù)均有成立,求的表達(dá)式;
(Ⅱ)在(Ⅰ)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
統(tǒng)計(jì)表明,某種型號(hào)的汽車(chē)在勻速行駛中每小時(shí)的耗油量y(升)關(guān)于行駛速度x(千米/小時(shí))的函數(shù)解析式可以表示為:.已知甲、乙兩地相距100千米.
(I)當(dāng)汽車(chē)以40千米/小時(shí)的速度勻速行駛時(shí),從甲地到乙地要耗油多少升?
(Ⅱ)當(dāng)汽車(chē)以多大的速度勻速行駛時(shí),從甲地到乙地耗油最少?最少為多少升?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com