分析 設(shè)OA=OB=2,兩個(gè)半圓的交點(diǎn)為C,且以AO為直徑的半圓以D為圓心,連結(jié)OC、CD.根據(jù)扇形面積公式和三角形面積公式算出S弓形OMC 算出兩塊陰影部分面積之和為π.最后根據(jù)幾何概型計(jì)算公式,將所得陰影部分面積除以扇形OAB的面積,即可得到所求概率.
解答 解:如圖,設(shè)兩個(gè)半圓的交點(diǎn)為C,且以AO為直徑的半圓以D為圓心,連結(jié)OC、CD
設(shè)OA=OB=2,則弓形OMC的面積為
S弓形OMC=S扇形OCD-SRt△DCO=$\frac{1}{4}$•π•12-$\frac{1}{2}$×1×1=$\frac{π}{4}$-$\frac{1}{2}$
可得空白部分面積為S空白=2S半圓AO-2S弓形OMC=2×$\frac{1}{2}$•π•12-($\frac{π}{2}$-1)=$\frac{π}{2}$+1,
因此,兩塊陰影部分面積之和S陰影=S扇形OAB-S空白=$\frac{1}{4}$π•22-($\frac{π}{2}$+1)=$\frac{π}{2}$-1
可得在扇形OAB內(nèi)隨機(jī)取一點(diǎn),此點(diǎn)取自陰影部分的概率為P=$\frac{{S}_{陰影}}{{S}_{扇形AOB}}$=$\frac{\frac{π}{2}-1}{π}$=$\frac{1}{2}$-$\frac{1}{π}$,
故答案為:$\frac{1}{2}$-$\frac{1}{π}$
點(diǎn)評(píng) 本題主要考查幾何概型的概率的計(jì)算,著重考查了扇形面積公式、組合圖形的面積計(jì)算和幾何概型計(jì)算公式等知識(shí),根據(jù)條件求出陰影部分的面積是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -20 | B. | -30 | C. | -40 | D. | -60 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 3 | B. | -3 | C. | 2 | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 甲乙 | B. | 甲丙 | C. | 丙丁 | D. | 乙丙 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com