16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x≤0}\\{x+\frac{4}{x},x>0}\end{array}\right.$有最小值,則實(shí)數(shù)a的取值范圍是( 。
A.(4,+∞)B.[4,+∞)C.(-∞,4]D.(-∞,4)

分析 按分段函數(shù)分類討論函數(shù)值的取值,從而確定a的取值范圍.

解答 解:①當(dāng)x>0時(shí),
f(x)=x+$\frac{4}{x}$≥2$\sqrt{4}$=4,
(當(dāng)且僅當(dāng)x=$\frac{4}{x}$,即x=2時(shí),等號(hào)成立);
②當(dāng)x≤0時(shí),a<2x+a≤1+a,
∵函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x≤0}\\{x+\frac{4}{x},x>0}\end{array}\right.$有最小值,
∴a≥4,
故選B.

點(diǎn)評(píng) 本題考查了分段函數(shù)的性質(zhì),同時(shí)考查了分類討論的思想方法應(yīng)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.若數(shù)列{an}滿足前n項(xiàng)和Sn=2an-4(n∈N*),數(shù)列{bn}滿足bn+1=an+2bn,且b1=2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.設(shè)z=$\frac{1}{2}$+$\frac{\sqrt{3}}{2}$i(i是虛數(shù)單位),求z+2z2+3z3+4z4+5z5+6z6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=ax2-2ax+b(a>0)在區(qū)間[-1,3]上的最大值為5,最小值為1.
(1)求a,b的值及f(x)的解析式;
(2)設(shè)g(x)=$\frac{f(x)}{x}$,若不等式g(3x)-t•3x≥0在x∈[0,2]上有解,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)函數(shù)f(x)=$\frac{lnx}{x+a}$,已知曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線2x+y-3=0平行,則a的值為( 。
A.-1或$-\frac{3}{2}$B.$-\frac{3}{2}$C.$-\frac{1}{2}$D.1或$-\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.某算法的程序框圖如圖所示,其中輸入的變量z在1,2,3,…,36這36個(gè)整數(shù)中等可能隨機(jī)產(chǎn)生,則按程序框圖正確編程運(yùn)行時(shí)輸出y的值為i的概率Pi(i=l,2,3)分別為( 。
A.$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{6}$B.$\frac{1}{6}$,$\frac{1}{2}$,$\frac{1}{3}$C.$\frac{1}{3}$,$\frac{1}{2}$,$\frac{1}{6}$D.$\frac{1}{2}$,$\frac{1}{6}$,$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.x,y滿足約束條件$\left\{\begin{array}{l}{0≤x≤2}\\{0≤y≤2}\\{x-3y≤-2}\end{array}\right.$,則z=x-y的最小值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.若實(shí)數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x+3y-3≥0}\\{2x-y-3≤0}\\{x-y+1≥0}\\{\;}\end{array}\right.$.
(Ⅰ)求目標(biāo)函數(shù)z=x+y的最大值;
(Ⅱ)求目標(biāo)函數(shù)z=x2+y2的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.若X~B(5,0.1),則P(X≤2)等于0.99144.

查看答案和解析>>

同步練習(xí)冊(cè)答案