11.設α、β都是銳角,且cosα=$\frac{1}{3}$,sin(α+β)=$\frac{4}{5}$,則cosβ等于( 。
A.$\frac{8\sqrt{2}-3}{15}$B.$\frac{8\sqrt{2}+3}{15}$C.$\frac{8\sqrt{2}-3}{15}$或$\frac{8\sqrt{2}+3}{15}$D..以上都不對

分析 由條件利用同角三角函數(shù)的基本關系求得sinα、cos(α+β)的值,再利用兩角差的余弦公式求得cosβ=cos[(α+β)-α]的值.

解答 解:∵α、β都是銳角,且cosα=$\frac{1}{3}$,sin(α+β)=$\frac{4}{5}$<$\frac{\sqrt{3}}{2}$,∴α>$\frac{π}{3}$,α+β為鈍角,
∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{2\sqrt{2}}{3}$,cos(α+β)=-$\sqrt{{1-sin}^{2}(α+β)}$=-$\frac{3}{5}$,
則cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=-$\frac{3}{5}$•$\frac{1}{3}$+$\frac{4}{5}$•$\frac{2\sqrt{2}}{3}$=$\frac{8\sqrt{2}-3}{15}$,
故選:A.

點評 本題主要考查同角三角函數(shù)的基本關系,兩角差的余弦公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

1.數(shù)列-1,3,-5,7,…的一個通項公式是( 。
A.an=(-1)n--1(2n+1)B.an=(-1)n-1(2n-1)C.an=(-1)n(2n-1)D.an=(-1)n(2n+1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如果sin$\frac{x}{2}$•cos$\frac{x}{2}$=$\frac{1}{3}$,那么sin(π-x)的值為( 。
A.$\frac{2}{3}$B.-$\frac{8}{9}$C.$\frac{8}{9}$D.±$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.集合A={-1,1},則集合A的子集共有( 。
A.2個B.4個C.6個D.8個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.若f(x)是定義在R上的減函數(shù),且對任意的a、b∈R滿足:f(a+b)=f(a)+f(b).且f(-2)=12
(1)判斷f(x)的奇偶性;
(2)若f(k-2)<f(2k)-6,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列說法正確的是(  )
A.命題“?x∈R,2x>0”的否定是“?x0∈R,2${\;}^{{x}_{0}}$≤0”
B.命題“若xy=0,則x=0或y=0”的否命題為“若xy≠0則x≠0或y≠0”
C.若命題p,¬q都是真命題,則命題“p∧q”為真命題
D.“x=-1”是“x2-5x-6=0”的必要不充分條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知:定義在R上的二次函數(shù)f(x)滿足:f(1)=f(3),f(x)min=1,f(0)=5.
(1)求f(x)的表達式;
(2)求滿足f(a)<2時,實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

20.設p:函數(shù)f(x)=log2(ax2-x+a)的值域為R,q:(log2x)2-4log2x+a+2≥0對x∈[$\frac{1}{4}$,1]恒成立,若p且q為假,p或q為真,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.定義在R上的函數(shù)f(x)滿足f(x)=$\left\{{\begin{array}{l}{{{log}_2}({8-x}),x≤0}\\{f({x+1})+f({x-1}),x>0}\end{array}}$,則f(621)的值為(  )
A.1B.2C.-2D.-3

查看答案和解析>>

同步練習冊答案