分析 (Ⅰ)過(guò)M作MN∥CQ交AQ于N,連接PN,由PB∥CQ得MN∥PB,從而四邊形PBMN為平行四邊形,對(duì)邊平行BM∥PN,由線面平行的判定定理得BM∥平面APQ.
(Ⅱ)先求得各點(diǎn)的坐標(biāo),從而得出相應(yīng)向量的坐標(biāo),再求出平面A1PQ的法向量,由線面角公式求解.
解答 (Ⅰ)證明:過(guò)M作MN∥CQ交AQ于N,連接PN,
∵AM:MC=3:4,
∴AM:AC=MN:CQ=3:7
∴MN=PB=3,
∵PB∥CQ,
∴MN∥PB,
∴四邊形PBMN為平行四邊形,
∴BM∥PN,
∴BM∥平面APQ,
∴BM∥平面APQ;
(Ⅱ)解:由圖1知,PB=AB=3,QC=7,分別以BA,BC,BB1為x,y,z軸,則A1(3,0,12),C(0,4,0),P(0,0,3),Q(0,4,7)
$\overrightarrow{BC}$=(0,4,0),$\overrightarrow{{A}_{1}P}$=(-3,0,-9),$\overrightarrow{{A}_{1}Q}$=(-3,4,-5)
設(shè)平面A1PQ的法向量為$\overrightarrow{n}$=(a,b,c),
得$\left\{\begin{array}{l}{-3a-9c=0}\\{-3a+4b-5c=0}\end{array}\right.$,
令a=-3,則c=1,b=-1,∴$\overrightarrow{n}$=(-3,-1,1)
∴cos<$\overrightarrow{BC}$,$\overrightarrow{n}$>=$\frac{4}{\sqrt{9+1+1}•4}$=$\frac{\sqrt{11}}{11}$
∴直線BC與平面A1PQ所成角的正弦值為$\frac{\sqrt{11}}{11}$.
點(diǎn)評(píng) 本題主要考查線與線,線與面,面與面的位置關(guān)系和線面平行的判定定理及空間向量的應(yīng)用,培養(yǎng)學(xué)生轉(zhuǎn)化的能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{\sqrt{26}}{2}$ | B. | $\frac{13}{5}$ | C. | $\sqrt{10}$ | D. | $\sqrt{17}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com