5.已知函數(shù)$f(x)=a(\frac{1}{{{a^x}-1}}+\frac{1}{2})$,其中a>1.
(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)判斷并證明函數(shù)f(x)的單調(diào)性.

分析 (1)根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.
(2)根據(jù)函數(shù)單調(diào)性的定義和性質(zhì)進(jìn)行證明即可.

解答 解:(1)f(x)的定義域?yàn)閧x|x≠0}關(guān)于原點(diǎn)對(duì)稱,$f(x)=\frac{{a({a^x}+1)}}{{2({{a^x}-1})}}$,
∴$f(-x)=\frac{{a({a^{-x}}+1)}}{{2({a^{-x}}-1)}}=\frac{{a(1+{a^x})}}{{2(1-{a^x})}}=-f(x)$,所以f(x)為奇函數(shù).
(2)任取x1,x2∈R,且x1<x2,則$f({x_1})-f({x_2})=\frac{{a({a^{x_2}}-{a^{x_1}})}}{{({a^{x_1}}-1)({a^{x_2}}-1)}}$,
∵a>1,∴${a^{x_1}}<{a^{x_2}}$,若x∈(0,+∞),${a^{x_1}}-1>0$,${a^{x_2}}-1>0$,
∴f(x1)>f(x2),
∴f(x)在(-∞,0)和(0,+∞)上為減函數(shù).

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性和單調(diào)性的判斷,利用定義法是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知多項(xiàng)式x3+x10=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,則a2=( 。
A.32B.42C.46D.56

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.在銳角△ABC中,已知內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,向量$\overrightarrow{m}$=(2sin(A+C),$\sqrt{3}$),$\overrightarrow{n}$=(cos2B,2cos$\frac{B}{2}$-1),且向量$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角B的大;
(2)如果b=1,求△ABC的面積S△ABC的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知角α的終邊在射線y=-$\sqrt{3}x({x<0})$上,那么sinα等于( 。
A.$\frac{{\sqrt{3}}}{2}$B.$\begin{array}{l}-{\frac{{\sqrt{3}}}{2}}\end{array}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合M={1,3,5,7,9},N={x|2x<9},則M∩N=( 。
A.{1,3,5}B.{1,3}C.{1}D.{3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知函數(shù)f(x)=x3+x2-x+1,求函數(shù)f(x)的單調(diào)減區(qū)間為(-1,$\frac{1}{3}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.廢品率x%和每噸生鐵成本y(元)之間的回歸直線方程為$\stackrel{∧}{y}$=2x+256,這表明(  )
A.y與x的相關(guān)系數(shù)為2
B.y與x的關(guān)系是函數(shù)關(guān)系
C.廢品率每增加1%,生鐵成本每噸大約增加2元
D.廢品率每增加1%,生鐵成本大約增加258元

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.關(guān)于x的不等式x2-(a+1)x+a<0的解集中,恰有3個(gè)整數(shù),則a的取值范圍是( 。
A.(4,5)B.(-3,-2)∪(4,5)C.(4,5]D.[-3,-2)∪(4,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別是F1(-c,0),F(xiàn)2(c,0),點(diǎn)M是橢圓上的任意一點(diǎn),△MF1F2的周長(zhǎng)是2$\sqrt{2}$+2,且△MF1F2面積的最大值是1.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若N是橢圓上一點(diǎn),點(diǎn)M,N不重合,線段MN的垂直平分線的方程是2λx-2y+1=0,求△0MN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案