13.已知角α的終邊在射線y=-$\sqrt{3}x({x<0})$上,那么sinα等于(  )
A.$\frac{{\sqrt{3}}}{2}$B.$\begin{array}{l}-{\frac{{\sqrt{3}}}{2}}\end{array}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

分析 在角α的終邊上任意取一點(-1,$\sqrt{3}$),利用任意角的三角函數(shù)的定義求得結(jié)果.

解答 解:∵角α的終邊在射線y=-$\sqrt{3}x({x<0})$上,
∴在角α的終邊上任意取一點(-1,$\sqrt{3}$),
則x=-1,y=$\sqrt{3}$,r=2,
∴sinα=$\frac{y}{r}$=$\frac{\sqrt{3}}{2}$,
故選:A.

點評 本題考查任意角的三角函數(shù)的定義,任意角的概念,考查計算能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓C的圓心在直線y=x+1上,半徑為$\sqrt{2}$,且圓C經(jīng)過點P(5,4)
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)求過點A(1,0)且與圓C相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)點M(0,-5),N(0,5),△MNP的周長為36,則△MNP的頂點P的軌跡方程為( 。
A.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{25}$=1(x≠0)B.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{144}$=1(x≠0)
C.$\frac{{x}^{2}}{169}$+$\frac{{y}^{2}}{25}$=1(y≠0)D.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{25}$=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=|log2|x-2||+k有四個零點x1,x2,x3,x4,則x1+x2+x3+x4+k的取值范圍為( 。
A.(8,+∞)B.(4,+∞)C.(-∞,8)D.(-∞,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點分別為F1,F(xiàn)2,且|F1F2|=2c,若橢圓上存在點M使得$\frac{a}{sin∠M{F}_{1}{F}_{2}}$=$\frac{c}{sin∠M{F}_{2}{F}_{1}}$,則該橢圓離心率的取值范圍為( 。
A.(0,$\sqrt{2}$-1)B.($\frac{\sqrt{2}}{2}$,1)C.(0,$\frac{\sqrt{2}}{2}$)D.($\sqrt{2}$-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知二次函數(shù)f(x)=x2+x的定義域為D恰是不等式$\frac{2}{x+1}≥1$的解集,其值域為A,函數(shù)g(x)=x3-3tx+$\frac{1}{2}t$的定義域為[0,1],值域為B.
(1)求函數(shù)f(x)定義域為D和值域A;
(2)是否存在負實數(shù)t,使得A⊆B成立?若存在,求負實數(shù)t的取值范圍;若不存在,請說明理由;
(3)若函數(shù)g(x)=x3-3tx+$\frac{1}{2}t$在定義域[0,1]上單調(diào)遞減,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=a(\frac{1}{{{a^x}-1}}+\frac{1}{2})$,其中a>1.
(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)判斷并證明函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)y=x+$\frac{3}{x-2}$(x>2),當(dāng)x=2+$\sqrt{3}$,函數(shù)y有最小值是2$\sqrt{3}$+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.奇數(shù)f(x)=lg[(m2-3m+2)x2+2(m-1)x+5]的值域為R,則實數(shù)m的取值范圍是( 。
A.[2,$\frac{9}{4}$]B.[2,$\frac{9}{4}$)C.(-∞,1)∪($\frac{9}{4}$,+∞)D.(-∞,1]∪($\frac{9}{4}$,+∞)

查看答案和解析>>

同步練習(xí)冊答案