15.已知多項(xiàng)式x3+x10=a0+a1(x+1)+a2(x+1)2+…+a9(x+1)9+a10(x+1)10,則a2=( 。
A.32B.42C.46D.56

分析 由條件利用x3+x10=[-1+(x+1)]3+[-1+(x+1)]10,即可求得a2的值.

解答 解:∵多項(xiàng)式x3+x10=[-1+(x+1)]3+[-1+(x+1)]10=a0+a1(x+1)+…+a9(x+1)9+a10(x+1)10
∴a2=-${C}_{3}^{2}+{C}_{10}^{2}$=42,
故選:B

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,式子的變形是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.如圖,在邊長為a的正方形SG1G2G3中,E,F(xiàn)分別是G1G2,G2G3的中點(diǎn),現(xiàn)沿SE,SF及EF把這個(gè)正方形折成一個(gè)三棱錐,使G1,G2,G3三點(diǎn)重合,重合點(diǎn)記為G,則點(diǎn)G到平面SEF的距離為$\frac{a}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)是定義在R上的奇函數(shù),f(x+2)=f(x),當(dāng)x∈(0,1]時(shí),f(x)=1-2|x-$\frac{1}{2}$|,則函數(shù)g(x)=f[f(x)]-$\frac{4}{3}$x在區(qū)間[-2,2]內(nèi)不同的零點(diǎn)個(gè)數(shù)是( 。
A.5B.6C.7D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知圓C的圓心在直線y=x+1上,半徑為$\sqrt{2}$,且圓C經(jīng)過點(diǎn)P(5,4)
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)求過點(diǎn)A(1,0)且與圓C相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.△ABC中,角A,B,C所對(duì)的邊長分別為a,b,c,$\overrightarrow{m}$=$({a,\sqrt{3}b})$,$\overrightarrow{n}$=(sinB,cosA),$\overrightarrow{m}$⊥$\overrightarrow{n}$,b=2,$a=\sqrt{7}$,則△ABC的面積為( 。
A.$\sqrt{3}$B.$\frac{{3\sqrt{3}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知集合A={-1,1,2,},B={x|(x-1)(x-3)≤0},則A∩B=( 。
A..{1,2}B.{1}C.{-1,1}D..∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,已知拋物線C:x2=2py(0<p<4),其上一點(diǎn)M(4,y0)到其焦點(diǎn)F的距離為5,過焦點(diǎn)F的直線l與拋物線C交于A,B左、右兩點(diǎn).
(Ⅰ)求拋物線C的標(biāo)準(zhǔn)方程;
(Ⅱ)若$\overrightarrow{AF}=\frac{1}{2}\overrightarrow{FB}$,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)點(diǎn)M(0,-5),N(0,5),△MNP的周長為36,則△MNP的頂點(diǎn)P的軌跡方程為(  )
A.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{25}$=1(x≠0)B.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{144}$=1(x≠0)
C.$\frac{{x}^{2}}{169}$+$\frac{{y}^{2}}{25}$=1(y≠0)D.$\frac{{y}^{2}}{169}$+$\frac{{x}^{2}}{25}$=1(y≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)$f(x)=a(\frac{1}{{{a^x}-1}}+\frac{1}{2})$,其中a>1.
(1)判斷并證明函數(shù)f(x)的奇偶性;
(2)判斷并證明函數(shù)f(x)的單調(diào)性.

查看答案和解析>>

同步練習(xí)冊(cè)答案