15.若z=$\frac{2i}{-1+i}$,則復(fù)數(shù)z的虛部為( 。
A.iB.1C.-iD.-1

分析 利用復(fù)數(shù)的運(yùn)算法則、虛部的定義即可得出.

解答 解:z=$\frac{2i}{-1+i}$=$\frac{-2i(1+i)}{(1-i)(1+i)}$=-i+1,則復(fù)數(shù)z的虛部為-1.
故選:D.

點(diǎn)評(píng) 本題考查了復(fù)數(shù)的運(yùn)算法則、虛部的定義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知拋物線C1:x2=2py(p>0)的焦點(diǎn)為F,點(diǎn)F″與F關(guān)于x軸對(duì)稱,直線l:y=2與拋物線C1相交于A,B兩點(diǎn),與y軸相交于M點(diǎn),且$\overrightarrow{F″A}$•$\overrightarrow{FB}$=-5.
(1)求拋物線C1的方程;
(2)若以F″,F(xiàn)為焦點(diǎn)的橢圓C2過(guò)點(diǎn)($\frac{\sqrt{3}}{2}$,$\frac{\sqrt{2}}{2}$).
①求橢圓C2的方程;
②過(guò)點(diǎn)F的直線與橢圓C2相交于P,Q兩點(diǎn),且$\overrightarrow{PF}$=2$\overrightarrow{FQ}$,求|$\overrightarrow{MP}$+$\overrightarrow{MQ}$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.記$\sum_{i=1}^n{a_i}$=a1+a2+…+an,又知f(x)=$\frac{1}{{{x^2}+1}}$,則$\sum_{i=1}^{100}$f(i)+$\sum_{i=2}^{100}$f($\frac{1}{i}$)的值為( 。
A.100B.99$\frac{1}{2}$C.99D.98$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}中,a1=1,a2=2,且an+1=4an-3an-1(n∈N*,n≥2).
(Ⅰ)令bn=an+1-an,求證:數(shù)列{bn}為等比數(shù)列;
(Ⅱ)求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)復(fù)數(shù)Z滿足Z(1-i)=3-i,i為虛數(shù)單位,則Z=(  )
A.1-2iB.1+2iC.2-iD.2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.甲、乙等4名實(shí)習(xí)生到某醫(yī)院的內(nèi)科、外科、口腔科3個(gè)科室進(jìn)行實(shí)習(xí),每個(gè)科室至少分配1名,且甲不能去口腔科,則不同的分配方案種數(shù)為( 。
A.54B.36C.24D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.過(guò)點(diǎn)A(3,0)且與y軸相切的圓的圓心的軌跡為( 。
A.B.橢圓C.直線D.拋物線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.如圖所示三棱錐A-BCD,其中AB=CD=5,AC=BD=6,AD=BC=7,則該三棱錐外接球的表面積為55π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若隨機(jī)變量ξ~B(n,0.6),且E(ξ)=3,則P(ξ=1)等于( 。
A.3×0.64B.2×0.45C.2×0.44D.3×0.44

查看答案和解析>>

同步練習(xí)冊(cè)答案