13.已知|z|=1,設(shè)復(fù)數(shù)u=z2-2,求|u|的最大值與最小值.

分析 設(shè)z=x+yi(x,y∈R),且x2+y2=1.把z代入u=z2-2,求模后用x替換y,配方后求得函數(shù)最值.

解答 解:設(shè)z=x+yi(x,y∈R),且x2+y2=1.
∴u=z2-2=(x+yi)2-2=(x2-y2-2)+2xyi,
則|u|=$\sqrt{({x}^{2}-{y}^{2}-2)^{2}+(2xy)^{2}}$
=$\sqrt{(2{x}^{2}-3)^{2}+4{x}^{2}(1-{x}^{2})}$=$\sqrt{9-8{x}^{2}}$(-1≤x≤1).
∴當(dāng)x=0,即z=±i時,|u|max=3;
當(dāng)x=±1,即z=±1時,|u|min=1.

點評 本題考查復(fù)數(shù)模的求法,訓(xùn)練了利用配方法求函數(shù)的最值,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.(1)在等差數(shù)列{an}中,已知a3=5,S3=21,求a8與S7的值.
(2)在公比為2的等比數(shù)列{an}中,a3•a11=16,求a6的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知四面體P-ABC,其中△ABC是邊長為6的等邊三角形,PA⊥平面ABC,PA=4,則四面體P-ABC外接球的表面積為64π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標系xOy中,向量$\overrightarrow{a}$,$\overrightarrow$的位置如圖所示,已知|$\overrightarrow{a}$|=|$\overrightarrow{OA}$|=4,|$\overrightarrow$|=|$\overrightarrow{AB}$|=3,且∠AOx=45°,∠OAB=105°,請分別求出向量$\overrightarrow{a}$,$\overrightarrow$的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的離心率為$\sqrt{3}$,$\frac{a}{\sqrt{{a}^{2}+^{2}}}=\frac{\sqrt{3}}{3}$.
(Ⅰ)求雙曲線C的方程;
(Ⅱ)設(shè)直線1是圓O:x2+y2=2上動點P(x0,y0)(x0y0≠0)處的切線,l與雙曲線C交于不同的兩點A,B,求證:OA⊥OB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)在(-1,1)上既是奇函數(shù),又是減函數(shù),則滿足f(1-x)+f(3x-2)<0的x的取值范圍是(  )
A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,1)C.($\frac{3}{4}$,+∞)D.($\frac{3}{4}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.計算
(1)($\root{3}{2}$×$\sqrt{3}$)6+(2×$\sqrt{2}$)${\;}^{\frac{4}{3}}$-4×($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25;
(2)lg4+lg9+2$\sqrt{(lg6)^{2}-2lg6+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)集合M={m|-3<m<2},N={n|-1≤n≤3,n∈Z},則M∩N={-1,0,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)Sn是公比q(q>0),首項為1的等比數(shù)列前n項和,求$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{n+1}}$.

查看答案和解析>>

同步練習(xí)冊答案