5.計(jì)算
(1)($\root{3}{2}$×$\sqrt{3}$)6+(2×$\sqrt{2}$)${\;}^{\frac{4}{3}}$-4×($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25;
(2)lg4+lg9+2$\sqrt{(lg6)^{2}-2lg6+1}$.

分析 利用有理指數(shù)冪以及對(duì)數(shù)運(yùn)算法則化簡(jiǎn)求解即可.

解答 解:(1)($\root{3}{2}$×$\sqrt{3}$)6+(2×$\sqrt{2}$)${\;}^{\frac{4}{3}}$-4×($\frac{16}{49}$)${\;}^{-\frac{1}{2}}$-$\root{4}{2}$×80.25
=4×27+4-7-2
=103.
(2)lg4+lg9+2$\sqrt{(lg6)^{2}-2lg6+1}$
=lg4+lg9+2(1-lg6)
=lg36+2-lg36
=2.

點(diǎn)評(píng) 本題考查對(duì)數(shù)運(yùn)算法則以及有理指數(shù)冪的運(yùn)算,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知數(shù)列{an}的前n項(xiàng)和${S_n}={n^3}$,則a6+a7+a8=387.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若直線l在x軸的截距與在y軸的截距都是負(fù)數(shù),則(  )
A.l的傾斜角為銳角且不過第一象限B.l的傾斜角為鈍角且不過第一象限
C.l的傾斜角為銳角且不過第四象限D.l的傾斜角為鈍角且不過第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知|z|=1,設(shè)復(fù)數(shù)u=z2-2,求|u|的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)滿足2f(x)+f($\frac{1}{x}$)=3x,則f(1)=1;f(x)=2x-$\frac{1}{x}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.《張丘建算經(jīng)》是公元5世紀(jì)中國古代內(nèi)容豐富的數(shù)學(xué)著作,書中卷上第二十三問:“今有女善織,日益功疾,初日織五尺,今一月織九匹三丈.問日益幾何?”其意思為“有個(gè)女子織布,每天比前一天多織相同量的布,第一天織五尺,一個(gè)月(按30天計(jì))共織390尺.問:每天多織多少布?”已知1匹=4丈,1丈=10尺,估算出每天多織的布的布約有( 。
A.0.55尺B.0.53尺C.0.52尺D.0.5尺

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知命題p:?x>1,log${\;}_{\frac{1}{2}}$x>0,命題q:?x∈R,x3≥3x.則下列命題為真命題的是(  )
A.p∨qB.p∨(¬q)C.p∧(¬q)D.(¬p)∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在日常生活中,為了盡快將水燒開,我們常常在燒水時(shí)將煤氣開關(guān)撥到最大位置(旋轉(zhuǎn)90°),很少考慮開關(guān)旋轉(zhuǎn)幾度最省煤氣的問題,以下是某次試驗(yàn)中,將開關(guān)撥到不同位置時(shí),分別燒開等量水的煤氣消耗量.
開關(guān)旋轉(zhuǎn)角度x(°)18°36°54°72°90°
煤氣用量y(立方米)0.1300.1220.1390.1490.172
(1)根據(jù)以上數(shù)據(jù),建立煤氣用量y關(guān)于開關(guān)旋轉(zhuǎn)角度x的函數(shù)模型;
(2)在本實(shí)驗(yàn)中,開關(guān)旋轉(zhuǎn)角度為多少時(shí),煤氣用量最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在△ABC中,A、B、C所對(duì)三邊分別為a、b、c,且B(-1,0)、C(1,0),求滿足b>a>c,b、a、c成等差數(shù)列時(shí).頂點(diǎn)A的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案