分析 討論q=1,0<q<1,q>1,運(yùn)用等比數(shù)列的求和公式,結(jié)合數(shù)列極限的公式,計(jì)算即可得到所求值.
解答 解:若q=1,則an=a1=1,Sn=n,
即有$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{n+1}}$=$\underset{lim}{n→∞}$$\frac{n}{n+1}$=$\underset{lim}{n→∞}$$\frac{1}{1+\frac{1}{n}}$
=$\frac{1}{1+0}$=1;
若q≠1,則Sn=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$=$\frac{1-{q}^{n}}{1-q}$,
即有$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{n+1}}$=$\underset{lim}{n→∞}$$\frac{1-{q}^{n}}{1-{q}^{n+1}}$,
當(dāng)0<q<1時(shí),$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{n+1}}$=$\frac{1-0}{1-0}$=1;
當(dāng)q>1時(shí),$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{n+1}}$=$\underset{lim}{n→∞}$$\frac{\frac{1}{{q}^{n}}-1}{\frac{1}{{q}^{n}}-q}$=$\frac{0-1}{0-q}$=$\frac{1}{q}$.
綜上可得0<q≤1時(shí),$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{n+1}}$=1;
q>1時(shí),$\underset{lim}{n→∞}$$\frac{{S}_{n}}{{S}_{n+1}}$=$\frac{1}{q}$.
點(diǎn)評(píng) 本題考查數(shù)列極限的求法,注意運(yùn)用等比數(shù)列的求和公式,同時(shí)考查分類討論的思想方法,考查運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
開(kāi)關(guān)旋轉(zhuǎn)角度x(°) | 18° | 36° | 54° | 72° | 90° |
煤氣用量y(立方米) | 0.130 | 0.122 | 0.139 | 0.149 | 0.172 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com