A. | $\frac{{2\sqrt{2}-\sqrt{6}}}{6}$ | B. | $\frac{{2\sqrt{3}-\sqrt{6}}}{6}$ | C. | $\frac{{2\sqrt{3}-2\sqrt{2}}}{3}$ | D. | $\frac{{3\sqrt{2}-2\sqrt{3}}}{3}$ |
分析 若在四個半徑為1且兩兩相切的實心小球所形成的球間空隙內(nèi)放置一個與其它球都相切的小球,可先求出該球的半徑,若將一個棱長為a的正方體嵌入到四個半徑為1且兩兩相切的實心小球所形成的球間空隙內(nèi),使得正方體能夠任意自由地轉(zhuǎn)動,則$\sqrt{3}a$=2r,進而可得答案.
解答 解:若在四個半徑為1且兩兩相切的實心小球所形成的球間空隙內(nèi)放置一個與其它球都相切的小球,
設該小球的半徑為r,
則r+1+$\sqrt{(r+1)^{2}-(\frac{2\sqrt{3}}{3})^{2}}$=$\frac{2\sqrt{6}}{3}$,
解得:r=$\frac{\sqrt{6}-2}{2}$,
若將一個棱長為a的正方體嵌入到四個半徑為1且兩兩相切的實心小球所形成的球間空隙內(nèi),使得正方體能夠任意自由地轉(zhuǎn)動,
則$\sqrt{3}a$=2r,
解得:a=$\frac{3\sqrt{2}-2\sqrt{3}}{3}$,
故選:D.
點評 本題考查的知識點是空間球與球之間的位置關(guān)系,正三棱錐的高與棱長的關(guān)系,難度較大.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com