分析 根據(jù)數(shù)列{an}滿足a1=2,an=an+1−1an+1+1,可得數(shù)列{an}是周期為4的周期數(shù)列,且a1a2a3a4=1,即可得出結(jié)論.
解答 解:∵an=an+1−1an+1+1,
∴an+1=1+an1−an,
∵a1=2,
∴a2=-3,
a3=-12,
a4=13,
a5=2,…,
∴數(shù)列{an}是周期為4的周期數(shù)列,且a1a2a3a4=1,
∵2018=4×504+2,
∴T2018=-6.
故答案為:-6.
點(diǎn)評(píng) 本題考查數(shù)列遞推式,考查學(xué)生分析解決問題的能力,確定數(shù)列{an}是周期為4的周期數(shù)列,且a1a2a3a4=1是關(guān)鍵,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | \frac{1}{6} | B. | \frac{7}{9} | C. | -\frac{1}{9} | D. | \frac{1}{3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | \frac{1}{2} | B. | -\frac{1}{2} | C. | \frac{{\sqrt{3}}}{2} | D. | -\frac{{\sqrt{3}}}{2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | \frac{1}{2π} | B. | \frac{1}{π} | C. | \frac{2}{π} | D. | \frac{1}{3π} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com