【題目】為了解消費者購物情況,某購物中心在電腦小票中隨機抽取張進行統(tǒng)計,將結果分成6組,分別是: , ,制成如下所示的頻率分布直方圖(假設消費金額均在元的區(qū)間內).

1)若在消費金額為元區(qū)間內按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票來自元和元區(qū)間(兩區(qū)間都有)的概率;

(2)為做好春節(jié)期間的商場促銷活動,商場設計了兩種不同的促銷方案.

方案一:全場商品打八五折.

方案二:全場購物滿100元減20元,滿300元減80元,滿500元減120元,以上減免只取最高優(yōu)惠,不重復減免.利用直方圖的信息分析:哪種方案優(yōu)惠力度更大,并說明理由.

【答案】(1) ;(2) 詳見解析.

【解析】試題分析:(1)由直方圖可知, 按分層抽樣在內抽6張,則內抽4張,在內抽2張分別列舉從中任選2張和滿足條件的基本事件,根據(jù)古典概型求出概率;(2) 由直方圖可知,各組頻率依次為0.1,0.2,0.25,0.3,0.1,0.05,分別計算出兩種方案的平均費用,對比可得答案.

試題解析:

(1)由直方圖可知,按分層抽樣在內抽6張,

內抽4張,記為,在內抽2張,記為

設兩張小票來自為事件,

從中任選2張,有以下選法: 共15種.

其中,滿足條件的有,共8種,

.

(2)由直方圖可知,各組頻率依次為0.1,0.2,0.25,0.3,0.1,0.05.

方案一購物的平均費用為:

(元).

方案二購物的平均費用為:

(元).

∴方案二的優(yōu)惠力度更大.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】2015男籃亞錦賽決賽階段,中國男籃以9連勝的不敗戰(zhàn)績贏得28屆亞錦賽冠軍,同時拿到亞洲唯一1張直通里約奧運會的入場券.賽后,中國男籃主力易建聯(lián)榮膺本屆亞錦賽(最有價值球員),下表是易建聯(lián)在這9場比賽中投籃的統(tǒng)計數(shù)據(jù).

注:(1)表中表示出手次命中次;

(2)(真實得分率)是衡量球員進攻的效率,其計算公式為:

(1)從上述9場比賽中隨機選擇一場,求易建聯(lián)在該場比賽中超過的概率;

(2)我們把比分分差不超過15分的比賽稱為“膠著比賽”.為了考察易建聯(lián)在“膠著比賽”中的發(fā)揮情況,從“膠著比賽”中隨機選擇兩場,求易建聯(lián)在這兩場比賽中至少有一場超過的概率;

(3)用來表示易建聯(lián)某場的得分,用來表示中國隊該場的總分,畫出散點圖如圖所示,請根據(jù)散點圖判斷之間是否具有線性相關關系?結合實際簡單說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知四棱錐,底面為菱形, 平面, 分別是的中點.

(Ⅰ)證明: ;

(Ⅱ)若上的動點, 與平面所成最大角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義在R上的單調增函數(shù)f(x),對任意x,y∈R都有f(x+y)=f(x)+f(y).
(1)判斷函數(shù)f(x)的奇偶性;
(2)若f(k3x)+f(3x﹣9x﹣2)<0對任意x∈R恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)= 則不等式f(x)>f(1)的解集是(
A.(﹣3,1)∪(3,+∞)
B.(﹣3,1)∪(2,+∞)
C.(﹣1,1)∪(3,+∞)
D.(﹣∞,﹣3)∪(1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)+2kx(k∈R)是偶函數(shù).
(1)求k的值;
(2)若方程f(x)=m有解,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為.

1)求橢圓的方程;

2)直線過橢圓的左焦點,且與橢圓交于兩點,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=(x﹣a)(x﹣b)(其中a>b),若f(x)的圖象如圖所示,則函數(shù)g(x)=ax+b的圖象大致為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)f(x)=ax2+bx+c(a≠0)的圖象過點(0,1)且與x軸有唯一的交點(﹣1,0).
(1)求f(x)的表達式;
(2)在(1)的條件下,設函數(shù)F(x)=f(x)﹣mx,若F(x)在區(qū)間[﹣2,2]上是單調函數(shù),求實數(shù)m的取值范圍;
(3)設函數(shù)g(x)=f(x)﹣kx,x∈[﹣2,2],記此函數(shù)的最小值為h(k),求h(k)的解析式.

查看答案和解析>>

同步練習冊答案