【題目】設(shè)函數(shù)f(x)= 則不等式f(x)>f(1)的解集是(
A.(﹣3,1)∪(3,+∞)
B.(﹣3,1)∪(2,+∞)
C.(﹣1,1)∪(3,+∞)
D.(﹣∞,﹣3)∪(1,3)

【答案】A
【解析】解:f(1)=3,當(dāng)不等式f(x)>f(1)即:f(x)>3
如果x<0 則 x+6>3可得 x>﹣3,可得﹣3<x<0.
如果 x≥0 有x2﹣4x+6>3可得x>3或 0≤x<1
綜上不等式的解集:(﹣3,1)∪(3,+∞)
故選A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解解一元二次不等式的相關(guān)知識(shí),掌握求一元二次不等式解集的步驟:一化:化二次項(xiàng)前的系數(shù)為正數(shù);二判:判斷對(duì)應(yīng)方程的根;三求:求對(duì)應(yīng)方程的根;四畫:畫出對(duì)應(yīng)函數(shù)的圖象;五解集:根據(jù)圖象寫出不等式的解集;規(guī)律:當(dāng)二次項(xiàng)系數(shù)為正時(shí),小于取中間,大于取兩邊.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知平面直角坐標(biāo)系,以為極點(diǎn), 軸的非負(fù)半軸為極軸建立極坐標(biāo)系, 點(diǎn)的極坐標(biāo)為,曲線的參數(shù)方程為為參數(shù)).

(1)寫出點(diǎn)的直角坐標(biāo)及曲線的直角坐標(biāo)方程;

(2)若為曲線上的動(dòng)點(diǎn),求的中點(diǎn)到直線 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)y= (m∈Z)的圖象與x軸,y軸沒有交點(diǎn),且關(guān)于y軸對(duì)稱,則m=(
A.1
B.0,2
C.﹣1,1,3
D.0,1,2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校對(duì)高二年級(jí)選學(xué)生物的學(xué)生的某次測試成績進(jìn)行了統(tǒng)計(jì),隨機(jī)抽取了名學(xué)生的成績作為樣,根據(jù)此數(shù)據(jù)作出了頻率分布統(tǒng)計(jì)表和頻率分布直方如下

(1)求表中的值和頻率分布直方圖中的值;

(2)如果用分層抽樣的方法,從樣本成績在的學(xué)生中共抽取人,再從人中選人,

求這人成績在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種商品在30天內(nèi)每件的銷售價(jià)格P(元)與時(shí)間t(天)的函數(shù)關(guān)系用下圖的兩條線段表示;該商品在30天內(nèi)日銷售量Q(件)與時(shí)間t(天)之間的關(guān)系Q=﹣t+40.

(1)根據(jù)提供的圖象,寫出該商品每件的銷售價(jià)格P與時(shí)間t的函數(shù)關(guān)系式;
(2)問這30天內(nèi),哪天的銷售額最大,最大是多少?(銷售額=銷售價(jià)格×銷售量)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解消費(fèi)者購物情況,某購物中心在電腦小票中隨機(jī)抽取張進(jìn)行統(tǒng)計(jì),將結(jié)果分成6組,分別是: , ,制成如下所示的頻率分布直方圖(假設(shè)消費(fèi)金額均在元的區(qū)間內(nèi)).

1)若在消費(fèi)金額為元區(qū)間內(nèi)按分層抽樣抽取6張電腦小票,再從中任選2張,求這2張小票來自元和元區(qū)間(兩區(qū)間都有)的概率;

(2)為做好春節(jié)期間的商場促銷活動(dòng),商場設(shè)計(jì)了兩種不同的促銷方案.

方案一:全場商品打八五折.

方案二:全場購物滿100元減20元,滿300元減80元,滿500元減120元,以上減免只取最高優(yōu)惠,不重復(fù)減免.利用直方圖的信息分析:哪種方案優(yōu)惠力度更大,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連擲一枚均勻的骰子兩次,所得向上的點(diǎn)數(shù)分別為,記,則下列說法正確的是( )

A. 事件的概率為 B. 事件是奇數(shù)互為對(duì)立事件

C. 事件互為互斥事件 D. 事件的概率為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銷售甲、乙兩種商品所得利潤分別是P(萬元)和Q(萬元),它們與投入資金t(萬元)的關(guān)系有經(jīng)驗(yàn)公式P=3 ,Q=t.今將3萬元資金投入經(jīng)營甲、乙兩種商品,其中對(duì)甲種商品投資x(萬元).求:
(1)經(jīng)營甲、乙兩種商品的總利潤y(萬元)關(guān)于x的函數(shù)表達(dá)式;
(2)怎樣將資金分配給甲、乙兩種商品,能使得總利潤y達(dá)到最大值,最大值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出以下說法:①不共面的四點(diǎn)中,任意三點(diǎn)不共線;

②有三個(gè)不同公共點(diǎn)的兩個(gè)平面重合;

③沒有公共點(diǎn)的兩條直線是異面直線;

④分別和兩條異面直線都相交的兩條直線異面;

一條直線和兩條異面直線都相交,則它們可以確定兩個(gè)平面.

其中正確結(jié)論的序號(hào)是_______.

查看答案和解析>>

同步練習(xí)冊答案