4.已知函數(shù)$f(x)={x^2}-2xsin(\frac{π}{2}x)+1$的兩個(gè)零點(diǎn)分別為m、n(m<n),則$\int_m^n{\sqrt{1-{x^2}}}dx$=$\frac{π}{2}$.

分析 先求出m,n,再利用幾何意義求出定積分.

解答 解:∵函數(shù)$f(x)={x^2}-2xsin(\frac{π}{2}x)+1$的兩個(gè)零點(diǎn)分別為m、n(m<n),
∴m=-1,n=1,
∴$\int_m^n{\sqrt{1-{x^2}}}dx$=${∫}_{-1}^{1}\sqrt{1-{x}^{2}}dx$=$\frac{1}{2}π•{1}^{2}$=$\frac{π}{2}$.
故答案為$\frac{π}{2}$.

點(diǎn)評(píng) 本題考查函數(shù)的零點(diǎn),考查定積分知識(shí)的運(yùn)用,求出m,n是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,某機(jī)械廠要將長(zhǎng)6m,寬2m的長(zhǎng)方形鐵皮ABCD進(jìn)行裁剪.已知點(diǎn)F為AD的中點(diǎn),點(diǎn)E在邊BC上,裁剪時(shí)先將四邊形CDFE沿直線EF翻折到MNFE處(點(diǎn)C,D分別落在直線BC下方點(diǎn)M,N處,F(xiàn)N交邊BC于點(diǎn)P),再沿直線PE裁剪.
(1)當(dāng)∠EFP=$\frac{π}{4}$時(shí),試判斷四邊形MNPE的形狀,并求其面積;
(2)若使裁剪得到的四邊形MNPE面積最大,請(qǐng)給出裁剪方案,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知直線l將圓C:x2+y2+x-2y+1=0平分,且與直線x+2y+3=0垂直,則l的方程為2x-y+2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.函數(shù)$f(x)=sin({\frac{π}{2}+2x})-5sinx$的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在正數(shù)數(shù)列{an}中,a1=2,且點(diǎn)$(a_n^2,a_{n-1}^2)$在直線x-9y=0上,則{an}的前n項(xiàng)和Sn等于(  )
A.3n-1B.$\frac{{1-{{({-3})}^n}}}{2}$C.$\frac{{1+{3^n}}}{2}$D.$\frac{{3{n^2}+n}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|2x-a|+|2x+3|,g(x)=|2x-3|+2.
(Ⅰ)解不等式|g(x)|<5;
(Ⅱ)若對(duì)任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{y-2x≤-2}\\{y≥1}\\{x+y≤4}\end{array}\right.$,則$\frac{y}{x}$的取值范圍是$[\frac{1}{3},1]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知向量$\overrightarrow a=(λ,1)$,$\overrightarrow b=(λ+2,1)$,若$|\overrightarrow a+\overrightarrow b|=|\overrightarrow a-\overrightarrow b|$,則實(shí)數(shù)λ的值為( 。
A.-1B.2C.1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知點(diǎn)M(-2,2),點(diǎn)N(x,y)的坐標(biāo)滿足不等式組$\left\{\begin{array}{l}{x≤0}\\{y≥0}\\{y-x≤2}\end{array}\right.$,則|MN|的取值范圍是$[\sqrt{2},2\sqrt{2}]$.

查看答案和解析>>

同步練習(xí)冊(cè)答案