A. | $\frac{2\sqrt{m-1}}{m-1}$ | B. | $\frac{-2\sqrt{-m}}{m}$ | C. | $\frac{2\sqrt{m}}{m}$ | D. | -$\frac{2\sqrt{1-m}}{m-1}$ |
分析 將橢圓方程化為標(biāo)準(zhǔn)方程$\frac{{x}^{2}}{\frac{1}{m+1}}$+$\frac{{y}^{2}}{\frac{1}{m}}$=1,由m>0,可得橢圓焦點在y軸上,即可得到a,長軸長為2a.
解答 解:橢圓(m+1)x2+my2=1,即為
$\frac{{x}^{2}}{\frac{1}{m+1}}$+$\frac{{y}^{2}}{\frac{1}{m}}$=1,
由m>0,可得0<m<m+1,則$\frac{1}{m}$>$\frac{1}{m+1}$,
即有a=$\sqrt{\frac{1}{m}}$,即2a=$\frac{2\sqrt{m}}{m}$.
故選:C.
點評 本題考查橢圓的方程和運用,注意將方程化為標(biāo)準(zhǔn)方程,考查化簡運算能力,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7,2,$\frac{3\sqrt{5}}{7}$ | B. | 14,4,$\frac{3\sqrt{5}}{7}$ | C. | 7,2,$\frac{\sqrt{5}}{7}$ | D. | 14,4,-$\frac{\sqrt{5}}{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ($\frac{5}{e}$,2] | B. | [-$\frac{5}{2e}$,-$\frac{8}{{3{e^2}}}$) | C. | [-$\frac{1}{2}$,-$\frac{8}{{3{e^2}}}$) | D. | [-4e,-$\frac{5}{2e}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$≤A≤$\frac{5π}{6}$ | B. | $\frac{π}{6}$≤A$≤\frac{π}{2}$ | C. | $\frac{π}{6}$≤B$≤\frac{5π}{6}$ | D. | $\frac{π}{6}$≤B$<\frac{π}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com