4.△ABC中,若對任意t∈R均有|$\overrightarrow{AB}$-t$\overrightarrow{AC}$|≥$\frac{1}{2}$|$\overrightarrow{AB}$|成立,則(  )
A.$\frac{π}{6}$≤A≤$\frac{5π}{6}$B.$\frac{π}{6}$≤A$≤\frac{π}{2}$C.$\frac{π}{6}$≤B$≤\frac{5π}{6}$D.$\frac{π}{6}$≤B$<\frac{π}{2}$

分析 則根據(jù)平面向量減法的幾何意義,由|$\overrightarrow{AB}$-t$\overrightarrow{AC}$|≥$\frac{1}{2}$|$\overrightarrow{AB}$|對任意t都成立|,從而得出角A的大。

解答 解:△ABC中,對任意的t,滿足|$\overrightarrow{AB}$-t$\overrightarrow{AC}$|≥$\frac{1}{2}$|$\overrightarrow{AB}$|成立,
不妨取t=1,則|$\overrightarrow{AB}$-$\overrightarrow{AC}$|≥$\frac{1}{2}$|$\overrightarrow{AB}$|成立,
即|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=|$\overrightarrow{CB}$|>$\frac{1}{2}$|$\overrightarrow{AB}$|,
∴cosA=$\frac{{AB}^{2}{+AC}^{2}{-BC}^{2}}{2AB•AC}$≤$\frac{{\frac{3}{4}AB}^{2}{+AC}^{2}}{2AB•AC}$
又$\frac{3}{4}$AB2+AC2≥2•$\frac{\sqrt{3}}{2}$AB•AC
∴cosA≤$\frac{\sqrt{3}}{2}$;
又cosA≥-$\frac{1}{2}$,
∴$\frac{π}{6}$≤A≤$\frac{5π}{6}$.
故選:A.

點評 本題考查了平面向量的線性運算問題,解題的關(guān)鍵是轉(zhuǎn)化條件|$\overrightarrow{AB}$-t$\overrightarrow{AC}$|≥$\frac{1}{2}$|$\overrightarrow{AB}$|,是難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.橢圓(m+1)x2+my2=1的長軸長是(  )
A.$\frac{2\sqrt{m-1}}{m-1}$B.$\frac{-2\sqrt{-m}}{m}$C.$\frac{2\sqrt{m}}{m}$D.-$\frac{2\sqrt{1-m}}{m-1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)f′(x)是函數(shù)f(x)的導(dǎo)函數(shù),y=f′(x)的部分圖象如圖所示,則y=f (x)的圖象最有可能是圖中的( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知雙曲線C1和橢圓C2有相同的焦點F1(-c,0),F(xiàn)2(c,0)(c>0),兩曲線在第一象限內(nèi)的交點為P,橢圓C2與y軸負方向交點為B,且P,F(xiàn)2,B三點共線,F(xiàn)2分$\overrightarrow{PB}$所成的比為1:2,又直線PB與雙曲線C1的另一個交點為Q,若|F2Q|=$\frac{\sqrt{3}}{5}$,求雙曲線C1和橢圓C2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=2,|$\overrightarrow$|=4,<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{2π}{3}$,求|$\overrightarrow{a}$-$\overrightarrow$|和<$\overrightarrow{a}$,$\overrightarrow{a}$-$\overrightarrow$>的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.等邊△ABC,D為BC的中點,點E滿足$\overrightarrow{CE}$=$\frac{1}{3}$$\overrightarrow{CA}$,則$\overrightarrow{DE}$$•\overrightarrow{CB}$=-$\frac{1}{3}$${|\overrightarrow{CB}|}^{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知點A(2,4),B(6,-4),點P在直線3x-4y+3=0上,若滿足PA2+PB2=λ的點P有且僅有1個,則實數(shù)λ的值為58.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在△ABC中,若sinA+sinB=sinC(cosA+cosB).
(1)求角C;
(2)若角C的對邊c=2,求△ABC周長的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.函數(shù)f(x)=axn(1-x)(x>0,n∈N*),當n=-2時,f(x)的極大值為$\frac{4}{27}$.
(1)求a的值;
(2)若方程f(x)-m=0有兩個正實根,求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案