18.已知函數(shù)$f(x)=lnx,g(x)=-\frac{1}{2}{x^2}+x$.
(1)設(shè)G(x)=2f(x)+g(x),求G(x)的單調(diào)遞增區(qū)間;
(2)證明:當(dāng)x>0時,f(x+1)>g(x);
(3)證明:k<1時,存在x0>1,當(dāng)x∈(1,x0)時,恒有$f(x)+g(x)-\frac{1}{2}>k({x-1})$.

分析 (1)求出G(x)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(2)令H(x)=f(x+1)-g(x),求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而證出結(jié)論即可;
(3)令F(x)=f(x)+g(x)-$\frac{1}{2}$-k(x-1),求出函數(shù)的導(dǎo)數(shù),得到函數(shù)的單調(diào)區(qū)間,從而證出不等式即可.

解答 解:(1)由題意知,$G(x)=2f(x)+g(x)=2lnx-\frac{1}{2}{x^2}+x,({x>0})$…(1分)
從而$G'(x)=\frac{2}{x}-x+1=-\frac{{{x^2}-x-2}}{x}$…(2分)
令G'(x)>0得0<x<2…(3分)
所以函數(shù)G(x)的單調(diào)遞增區(qū)間為(0,2)…(4分)
(2)令$H(x)=f({x+1})-g(x)=ln({x+1})+\frac{1}{2}{x^2}-x$…(5分)
從而$H'(x)=\frac{1}{x+1}+x-1=\frac{x^2}{x+1}$…(6分)
因?yàn)閤>0,所以H'(x)>0,故H(x)在(0,+∞)上單調(diào)遞增…(7分)
所以,當(dāng)x>0時,H(x)>H(0)=0,
即f(x+1)>g(x)…(8分)
(3)當(dāng)k<1時,
令$F(x)=f(x)+g(x)-\frac{1}{2}-k({x-1})=lnx-\frac{1}{2}{x^2}+x-\frac{1}{2}-k({x-1}),({x>0})$…(9分)
則有$F'(x)=\frac{1}{x}-x+1-k=\frac{{-{x^2}+({1-k})x+1}}{x}$…(10分)
由F'(x)=0得-x2+(1-k)x+1=0,
解之得,${x_1}=\frac{{1-k-\sqrt{{{({1-k})}^2}+4}}}{2}<0,{x_2}=\frac{{1-k+\sqrt{{{({1-k})}^2}+4}}}{2}>1$,
…(11分)
從而存在x0=x2>1,當(dāng)x∈(1,x0)時,F(xiàn)'(x)>0,
故F(x)在[1,x0)上單調(diào)遞增,從而當(dāng)x∈(1,x0)時,F(xiàn)(x)>F(1)=0,
即$f(x)+g(x)-\frac{1}{2}>k({x-1})$…(12分)

點(diǎn)評 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及不等式的證明,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知f(x)=xlnx,g(x)=x3+ax2-x+2
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)在[t,t+2](t>0)上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若集合A={0,1},B={y|y=2x,x∈A},則(∁RA)∩B=( 。
A.{0}B.{2}C.{2,4}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在四棱錐中P-ABCD,底面ABCD是正方形,側(cè)面PAD⊥底面ABCD,且PA=PD=$\frac{{\sqrt{2}}}{2}$AD、E、F,分別為PC、BD的中點(diǎn).
(1)求證:EF∥平面PAD;
(2)在線段AB上是否存在點(diǎn)G,使得二面角C-PD-G的余弦值為$\frac{{\sqrt{3}}}{3}$,若存在,請求出點(diǎn)G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若數(shù)列{an}的首項(xiàng)a1=2,且${a_{n+1}}=3{a_n}+2({n∈{N^*}})$;令bn=log3(an+1),則b1+b2+b3+…+b100=5050.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在棱長為2R的正方體容器內(nèi)裝滿水,先把半徑為R的球放入水中,然后再放入一球,使它淹沒在水中,且使溢出的水最多,則先后放入的兩個球的半徑之比為2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某研究機(jī)構(gòu)對高三學(xué)生的記憶力x和判斷力y進(jìn)行統(tǒng)計分析,得到下表數(shù)據(jù)
x681012
y2356
(1)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$;
(2)試根據(jù)(2)中求出的線性回歸方程,預(yù)測記憶力為9的同學(xué)的判斷力.
(相關(guān)公式:$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$x,參考數(shù)據(jù)$\sum_{i=1}^{4}$xiyi=158,$\sum_{i=1}^{4}$x${\;}_{i}^{2}$=344)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知圓C的圓心為(3,1),且圓C與直線y=x相切.
(1)圓C的方程是(x-3)2+(y-1)2=2;
(2)若圓C與直線l:x-y+a=0(a≠0)交于A、B兩點(diǎn),且|AB|=2,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在△ABC中,“A=$\frac{π}{4}$”是“sinA=$\frac{\sqrt{2}}{2}$”的( 。
A.充分非必要條件B.必要非充分條件
C.充分必要條件D.既非充分也非必要條件

查看答案和解析>>

同步練習(xí)冊答案