【題目】己知拋物線的頂點(diǎn)為,與軸的交點(diǎn)為,則直線稱(chēng)為拋物線的伴隨直線.
(1)求拋物線的伴隨直線的表達(dá)式;
(2)已知拋物線的伴隨直線為,且該拋物線與軸有兩個(gè)不同的公共點(diǎn),求的取值范圍.
(3)已知,若拋物線的伴隨直線為,且該拋物線與線段恰有1個(gè)公共點(diǎn),求的取值范圍(直接寫(xiě)出答案即可)
【答案】(1);(2);(3) 或.
【解析】
(1)先求拋物線的頂點(diǎn)為,再與拋物線軸的交點(diǎn)為,根據(jù)截距式即可得出伴隨直線方程.
(2)先求拋物線的頂點(diǎn),與軸的交點(diǎn)為,將代入伴隨直線方程,解得,,再根據(jù)該拋物線與軸有兩個(gè)不同的公共點(diǎn),用根的判別式列不等式,解得,結(jié)合,即可得出的取值范圍.
(3)根據(jù)拋物線的伴隨直線為,將拋物線化為,又因?yàn)樵搾佄锞與線段恰有1個(gè)公共點(diǎn),即則 或,代入數(shù)據(jù)求解即可.
解: (1)的頂點(diǎn)為,
與拋物線軸的交點(diǎn)為,
直線:,即,
所以拋物線的伴隨直線為: .
(2)已知拋物線的伴隨直線為,
頂點(diǎn)為,與軸的交點(diǎn)為,
在直線上,
所以,解得,
又因該拋物線與軸有兩個(gè)不同的公共點(diǎn),
,所以,解得,
又因?yàn)?/span>,故且.
所以的取值范圍為.
(3)因?yàn)閽佄锞的伴隨直線為,
頂點(diǎn),與軸的交點(diǎn)為,
,解得:,
所以拋物線可表示為: ,對(duì)稱(chēng)軸為
又因?yàn)?/span>,
且該拋物線與線段恰有1個(gè)公共點(diǎn)
線段為:.
則 或
解得或 ,.
所以可得的取值范圍為或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|),x為f(x)的零點(diǎn),x為y=f(x)圖象的對(duì)稱(chēng)軸,且f(x)在()上單調(diào),則ω的最大值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)是定義域?yàn)?/span>上的奇函數(shù),且.
(1)用定義證明:函數(shù)在上是增函數(shù);
(2)若實(shí)數(shù)t滿足求實(shí)數(shù)t的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題為真命題的是( )
A.若為真命題,則為真命題;
B.“”是“”的充分不必要條件;
C.命題“若,則”的否命題為“若,則”;
D.已知命題,使得,則,使得。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=奇函數(shù),且.
(1)求實(shí)數(shù)p ,q的值.
(2)判斷函數(shù)f(x)在上的單調(diào)性,并證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,平面,,,,且,,點(diǎn)在線段上.
(1)求證:平面;
(2)若二面角的大小為,試確定點(diǎn)的位置.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定點(diǎn),定直線: ,動(dòng)圓過(guò)點(diǎn),且與直線相切.
(Ⅰ)求動(dòng)圓的圓心軌跡的方程;
(Ⅱ)過(guò)點(diǎn)的直線與曲線相交于, 兩點(diǎn),分別過(guò)點(diǎn), 作曲線的切線, ,兩條切線相交于點(diǎn),求外接圓面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】
已知函數(shù),其中是常數(shù).
(Ⅰ)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程;
(Ⅱ)若存在實(shí)數(shù),使得關(guān)于的方程在上有兩個(gè)不相等的實(shí)數(shù)根,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若對(duì)恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com