【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|),x為f(x)的零點(diǎn),x為y=f(x)圖象的對(duì)稱軸,且f(x)在()上單調(diào),則ω的最大值為_____.
【答案】11
【解析】
首先利用函數(shù)的零點(diǎn)和對(duì)稱軸求出函數(shù)的關(guān)系式,進(jìn)一步利用函數(shù)的單調(diào)性求出結(jié)果.
f(x)=sin(ωx+φ),
由于x為f(x)的零點(diǎn),
所以(∈Z),
且x為y=f(x)圖象的對(duì)稱軸,
所以(k∈Z),
所以(k∈Z),由于|φ|,
所以φ.
把φ代入上式整理得ω=2(k﹣k′)+1.所以是奇數(shù).
由于f(x)在()上單調(diào),
所以,整理得,
故,整理得ω≤14,
當(dāng)k﹣k′=6時(shí),ω的最大值為13.
當(dāng)時(shí),因?yàn)?/span>φ,,
計(jì)算得函數(shù)在區(qū)間()不單調(diào),所以舍去.
當(dāng)時(shí),
解不等式
得函數(shù)的減區(qū)間為,
當(dāng)時(shí),減區(qū)間為
因?yàn)椋?/span>) ,符合題意.
故答案為:11
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年8月18日,舉世矚目的第18屆亞運(yùn)會(huì)在印尼首都雅加達(dá)舉行,為了豐富亞運(yùn)會(huì)志愿者的業(yè)余生活,同時(shí)鼓勵(lì)更多的有志青年加入志愿者行列,大會(huì)主辦方?jīng)Q定對(duì)150名志愿者組織一次有關(guān)體育運(yùn)動(dòng)的知識(shí)競(jìng)賽(滿分120分)并計(jì)劃對(duì)成績(jī)前15名的志愿者進(jìn)行獎(jiǎng)勵(lì),現(xiàn)將所有志愿者的競(jìng)賽成績(jī)制成頻率分布直方圖,如圖所示,若第三組與第五組的頻數(shù)之和是第二組的頻數(shù)的3倍,試回答以下問(wèn)題:
(1)求圖中的值;
(2)求志愿者知識(shí)競(jìng)賽的平均成績(jī);
(3)從受獎(jiǎng)勵(lì)的15人中按成績(jī)利用分層抽樣抽取5人,再?gòu)某槿〉?人中,隨機(jī)抽取2人在主會(huì)場(chǎng)服務(wù),求抽取的這2人中其中一人成績(jī)?cè)?/span>分的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求證:函數(shù)有極值;
(2)若,且函數(shù)與的圖象有兩個(gè)相異交點(diǎn),求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)“蝴蝶形圖案(陰影區(qū)域)”,其中是過(guò)拋物線的兩條互相垂直的弦(點(diǎn)在第二象限),且交于點(diǎn),點(diǎn)為軸上一點(diǎn),,其中為銳角
(1)設(shè)線段的長(zhǎng)為,將表示為關(guān)于的函數(shù)
(2)求“蝴蝶形圖案”面積的最小值,并指出取最小值時(shí)的大小
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等比數(shù)列的各項(xiàng)為正數(shù),且.
(1)求的通項(xiàng)公式;
(2)設(shè),求證數(shù)列的前項(xiàng)和<2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】山東新舊動(dòng)能轉(zhuǎn)換綜合試驗(yàn)區(qū)是黨的十九大后獲批的首個(gè)區(qū)域性國(guó)家發(fā)展戰(zhàn)略,也是中國(guó)第一個(gè)以新舊動(dòng)能轉(zhuǎn)換為主題的區(qū)域發(fā)展戰(zhàn)略.泰安某高新技術(shù)企業(yè)決定抓住發(fā)展機(jī)遇,加快企業(yè)發(fā)展.已知該企業(yè)的年固定成本為500萬(wàn)元,每生產(chǎn)設(shè)備臺(tái),需另投入成本萬(wàn)元.若年產(chǎn)量不足80臺(tái),則;若年產(chǎn)量不小于80臺(tái),則.每臺(tái)設(shè)備售價(jià)為100萬(wàn)元,通過(guò)市場(chǎng)分析,該企業(yè)生產(chǎn)的設(shè)備能全部售完.
(1)寫出年利潤(rùn)(萬(wàn)元)關(guān)于年產(chǎn)量(臺(tái))的關(guān)系式;
(2)年產(chǎn)量為多少臺(tái)時(shí),該企業(yè)所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn), 軸正半軸為極軸,取相同的單位長(zhǎng)度建立極坐標(biāo)系,已知曲線,直線.
(1)將曲線上所有點(diǎn)的橫坐標(biāo)、縱坐標(biāo)分別伸長(zhǎng)為原來(lái)的2倍、倍后得到曲線,請(qǐng)寫出直線,和曲線的直角坐標(biāo)方程;
(2)若直線經(jīng)過(guò)點(diǎn)且與曲線交于點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)在上有最大值1,設(shè) .
(1)求的值;
(2)若不等式在上恒成立,求實(shí)數(shù)的取值范圍;
(3)若函數(shù)有三個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍(為自然對(duì)數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】己知拋物線的頂點(diǎn)為,與軸的交點(diǎn)為,則直線稱為拋物線的伴隨直線.
(1)求拋物線的伴隨直線的表達(dá)式;
(2)已知拋物線的伴隨直線為,且該拋物線與軸有兩個(gè)不同的公共點(diǎn),求的取值范圍.
(3)已知,若拋物線的伴隨直線為,且該拋物線與線段恰有1個(gè)公共點(diǎn),求的取值范圍(直接寫出答案即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com