不論m為何值,直線mx-y+2m+1=0恒過的一個(gè)定點(diǎn)是
 
考點(diǎn):恒過定點(diǎn)的直線
專題:計(jì)算題
分析:直線mx-y+2m+1=0可化為m(x+2)+(-y+1)=0,根據(jù)m∈R,建立方程組,即可求得定點(diǎn)的坐標(biāo).
解答: 解:直線mx-y+2m+1=0可化為m(x+2)+(-y+1)=0
∵m∈R
x+2=0
-y+1=0

∴x=-2,y=1,
∴直線mx-y+2m+1=0經(jīng)過定點(diǎn)(-2,1)
故答案為:(-2,1).
點(diǎn)評:本題考查直線恒過定點(diǎn),解題的關(guān)鍵是將方程中的參數(shù)分離,再建立方程組.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax-
a
x
-2lnx(a∈R) 
(Ⅰ)當(dāng)a=
1
2
時(shí),求f(x)的單調(diào)區(qū)間;
(Ⅱ)若a>
2e
e2+1
,若m,n分別為f(x)的極大值和極小值,若S=m-n,求S取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知?jiǎng)狱c(diǎn)M的坐標(biāo)滿足方程5
x2+y2
=|3x+4y-12|,則動(dòng)點(diǎn)M的軌跡為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

盒中裝有7個(gè)零件,其中2個(gè)是使用過的,另外5個(gè)未經(jīng)使用.從盒中隨機(jī)抽取2個(gè)零件,使用后放回盒中,記此時(shí)盒中使用過的零件個(gè)數(shù)為X,則X的數(shù)學(xué)期望E(X)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC外接圓的半徑為1,圓心為O,且2
OA
+
AB
+
AC
=
0
|OA|
=|
AB
|,則
CA
CB
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=3sin(
1
2
x-
π
4
),x∈R

(1)列表并畫出函數(shù)f(x)在長度為一個(gè)周期的閉區(qū)間上的簡圖;
(2)將函數(shù)y=sinx的圖象作怎樣的變換可得到f(x)的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要使y=
a-2
x-1
為增函數(shù),a-2應(yīng)滿足
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alnx-ax-3(a∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)y=f(x)的圖象在點(diǎn)(2,f(2))處的切線的傾斜角為45°,問:m在什么范圍取值時(shí),對于任意的t∈[1,2],函數(shù)g(x)=x3+x2[
m
2
+f′(x)]在區(qū)間(t,3)上總存在極值?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇-2,2],且f(x)在區(qū)間[-2,2]上是增函數(shù),f(1-m)<f(m),求實(shí)數(shù)m的取值范圍
 

查看答案和解析>>

同步練習(xí)冊答案