(本小題滿分13分)經(jīng)市場調(diào)查,某商場的一種商品在過去的一個月內(nèi)(以30天計)銷售價格(元)與時間(天)的函數(shù)關(guān)系近似滿足(為正的常數(shù)),日銷售量(件)與時間(天)的函數(shù)關(guān)系近似滿足,且第25天的銷售金額為13000元.
(1)求的值;
(2)試寫出該商品的日銷售金額關(guān)于時間的函數(shù)關(guān)系式,并求前半個月銷售金額的最小值。
(1);(2= ,有最小值12100 元。
解析試題分析:(1)由題意,得,即,
解得……4分
(2)
= ……9分
當(dāng)時,在上單調(diào)減,在上單調(diào)增
所以當(dāng)時,有最小值12100 元……………13分
考點:函數(shù)的實際應(yīng)用;分段函數(shù)。函數(shù)的單調(diào)性及最值。
點評:研究數(shù)學(xué)模型,建立數(shù)學(xué)模型,進而借鑒數(shù)學(xué)模型,對提高解決實際問題的能力,以及提高數(shù)學(xué)素養(yǎng)都是十分重要的.建立模型的步驟可分為: (1) 分析問題中哪些是變量,哪些是常量,分別用字母表示; (2) 根據(jù)所給條件,運用數(shù)學(xué)知識,確定等量關(guān)系; (3) 寫出的解析式并指明定義域。
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分16分)
有甲、乙兩種商品,經(jīng)銷這兩種商品所獲的利潤依次為(萬元)和(萬元),它們與投入的資金(萬元)的關(guān)系,據(jù)經(jīng)驗估計為:, 今有3萬元資金投入經(jīng)銷甲、乙兩種商品,為了獲得最大利潤,應(yīng)對甲、乙兩種商品分別投入多少資金?總共獲得的最大利潤是多少萬元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分) 本題共有2個小題,第1小題滿分6分,第2小題滿分8分.
已知函數(shù)=.
(1)判斷函數(shù)的奇偶性,并證明;
(2)求的反函數(shù),并求使得函數(shù)有零點的實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)(),
(Ⅰ)求函數(shù)的最小值;
(Ⅱ)已知,:關(guān)于的不等式對任意恒成立;
:函數(shù)是增函數(shù).若“或”為真,“且”為假,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分15分)
如圖,在半徑為的圓形(為圓心)鋁皮上截取一塊矩形材料,其中點在圓上,點、在兩半徑上,現(xiàn)將此矩形鋁皮卷成一個以為母線的圓柱形罐子的側(cè)面(不計剪裁和拼接損耗),設(shè)矩形的邊長,圓柱的體積為.
(1)寫出體積關(guān)于的函數(shù)關(guān)系式,并指出定義域;
(2)當(dāng)為何值時,才能使做出的圓柱形罐子體積最大?最大體積是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某企業(yè)為打入國際市場,決定從A、B兩種產(chǎn)品中只選擇一種進行投資生產(chǎn).已
知投資生產(chǎn)這兩種產(chǎn)品的有關(guān)數(shù)據(jù)如下表:(單位:萬美元)
項目類別 | 年固定成本 | 每件產(chǎn)品成本 | 每件產(chǎn)品銷售價 | 每年最多可生產(chǎn)的件數(shù) |
A產(chǎn)品 | 10 | m | 5 | 100 |
B產(chǎn)品 | 20 | 4 | 9 | 60 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com