4.已知a,b,c>0,$\frac{{a}^{2}}{1+{a}^{2}}$+$\frac{^{2}}{1+^{2}}$+$\frac{{c}^{2}}{1+{c}^{2}}$=1,證明.αbc≤$\frac{\sqrt{2}}{4}$.

分析 先用柯西不等式得出ab+bc+ac≤$\frac{3}{2}$,再用基本不等式ab+bc+ac≥3$\root{3}{ab•bc•ac}$,得出abc≤$\frac{\sqrt{2}}{4}$.

解答 證明:根據(jù)柯西不等式(n=3)得,
[(1+a2)+(1+b2)+(1+c2)]•($\frac{{a}^{2}}{1+{a}^{2}}$+$\frac{^{2}}{1+^{2}}$+$\frac{{c}^{2}}{1+{c}^{2}}$)≥(a+b+c)2
即a2+b2+c2+3≥(a+b+c)2,
整理得,ab+bc+ac≤$\frac{3}{2}$,
再由基本不等式:ab+bc+ac≥3$\root{3}{ab•bc•ac}$,
兩邊立方得,a2b2c2≤$(\frac{ab+bc+ac}{3})^3$≤$\frac{1}{8}$,
所以,abc≤$\sqrt{\frac{1}{8}}$=$\frac{\sqrt{2}}{4}$,
即abc≤$\frac{\sqrt{2}}{4}$,證畢.

點(diǎn)評 本題主要考查了運(yùn)用柯西不等式,基本不等式證明不等式,適當(dāng)湊配和合理放縮是證明的關(guān)鍵,屬于難題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)滿足以下兩個條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“期待數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(1)分別寫出一個單調(diào)遞增的3階和4階“期待數(shù)列”;
(2)若某2013階“期待數(shù)列”是等差數(shù)列,求該數(shù)列的通項公式;
(3)記n階“期待數(shù)列”的前k項和為Sk(k=1,2,3,…,n),試證:|Sk|≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.空間四邊形OABC各邊以及AC、BO的長都是1,點(diǎn)D、E分別是邊OA,BC的中點(diǎn),連接DE.
(1)求直線AC與OB所成角;
(2)計算DE的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,正方形ABCD邊長為2,E、F分別為AD、CD的中點(diǎn),沿EF將正方形ABCD剪成兩片,將這樣的圖片對接在正六邊形各邊上,如圖所示,再將所得圖片沿虛線折起,圍成一個幾何體,則此幾何體的體積( 。
A.3B.4C.3$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知數(shù)列{an}為等差數(shù)列,是${a}_{1}^{2}$+${a}_{7}^{2}$≤10,則a4的最大值是?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.不等式$\sqrt{\frac{{a}^{2}+^{2}}{2}}$-$\sqrt{ab}$≥λ($\frac{a+b}{2}$-$\sqrt{ab}$)對任意非負(fù)實數(shù)a.b恒成立,則正數(shù)λ的取值范圍為( 。
A.(0,1]B.(0,$\frac{\sqrt{6}}{2}$]C.(0,$\sqrt{2}$]D.(0,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是( 。
A.y=-x+1B.y=$\sqrt{x}$C.y=x2-4x+5D.y=$\frac{2}{x}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知定義域為R的奇函數(shù)滿足f(x+4)=f(x),且x∈(0,2)時,f(x)=ln(x2+a),a>0,若函數(shù)f(x)在區(qū)間[-4,4]上有9個零點(diǎn),則實數(shù)a的取值范圍為(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在各項均為正數(shù)的數(shù)列{an}中,若a1=$\frac{1}{3}$,an+1=an+$\frac{{a}_{n}^{2}}{{n}^{2}}$(n∈N+).
(1)試判斷數(shù)列{an}的單調(diào)性,并證明對任意的n∈N+,恒有an<1;
(2)求證:對一切n∈N+,有an>$\frac{1}{2}$-$\frac{1}{4n}$.

查看答案和解析>>

同步練習(xí)冊答案