19.證明:若函數(shù)y=f(x),x∈R滿足f(x)=f(x-a)+f(x+a)(常數(shù)a∈R+),則f(x)是周期函數(shù),且6a是它的一個周期.

分析 由f(x)=f(x-a)+f(x+a)得f(x+a)=f(x)+f(x+2a),兩式相加得f(x+2a)=-f(x-a),令x取x+a、x+3a分別化簡,由函數(shù)的周期性的定義即可證明結(jié)論成立.

解答 證明:因為f(x)=f(x-a)+f(x+a),
所以f(x+a)=f(x)+f(x+2a),
兩式相加得,f(x+2a)=-f(x-a),
令x取x+a得,f(x+3a)=-f(x),
令x取x+3a得,f(x+6a)=f([x+3a)+3a]=-f(x+3a)=f(x),
即f(x+6a)=f(x),又常數(shù)a∈R+,
所以f(x)是周期函數(shù),且周期為6a.

點評 本題考查函數(shù)周期性的定義以及判斷,考查賦值法的應(yīng)用,化簡、變形能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=1g($\frac{mx}{x+1}$+n)(m,n∈R,m>0)的圖象關(guān)于原點對稱.
(1)求m,n的值;
(2)若x1x2>0,試比較f($\frac{{x}_{1}{+x}_{2}}{2}$)與$\frac{1}{2}$[f(x1)+f(x2)]的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.過橢圓$\frac{{x}^{2}}{16}+\frac{{y}^{2}}{4}$=1內(nèi)一點P(3,1),且被這點平分的弦所在直線的方程是3x+4y-13=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列條件,能使sinα+cossα>1成立的是( 。
A.0<α<πB.0<α<$\frac{3π}{2}$C.0<α<$\frac{π}{2}$D.$\frac{π}{4}$≤α≤$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知△ABC的內(nèi)角為A、B、C的所對的邊分別為a,b,c,且A、B、C成等差數(shù)列.且△ABC的面積為4$\sqrt{3}$,則2a+3c的最小值為8$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.設(shè)a為實參數(shù),試討論y=asin2x+2cosx-a-2的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某校組織高一學(xué)生對所在市的居民中擁有電視機(jī)、電冰箱、組合音響的情況進(jìn)行一次抽樣調(diào)查,調(diào)查結(jié)果:3戶特困戶三種全無;有一種的:電視機(jī)1090戶,電冰箱747戶,組合音響850戶;有兩種的:電視機(jī)、組合音響570戶,組合音響、電冰箱420戶,電視機(jī)、電冰箱520戶;“三大件”都有的265戶.調(diào)查組的同學(xué)在統(tǒng)計上述數(shù)字時,發(fā)現(xiàn)沒有記下被調(diào)查的居民總戶數(shù),你能避免重新調(diào)查而解決這個問題嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.一個幾何體的三視圖如圖所示,則這個幾何體的體積為( 。
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.在等差數(shù)列{an}中,若a3和a9是方程x2-4x+3=0的兩根,則a6的值是2.

查看答案和解析>>

同步練習(xí)冊答案