19.已知不等式kx2-2x+6k<0 (k≠0),若不等式的解集為∅,則k的取值范圍為k≥$\frac{\sqrt{6}}{6}$.

分析 根據(jù)題意,得出不等式組$\left\{\begin{array}{l}{k>0}\\{△≤0}\end{array}\right.$,求出解集即可.

解答 解:∵不等式kx2-2x+6k<0 (k≠0)的解集為∅,
∴應(yīng)滿足$\left\{\begin{array}{l}{k>0}\\{△≤0}\end{array}\right.$,
即$\left\{\begin{array}{l}{k>0}\\{4-2{4k}^{2}≤0}\end{array}\right.$;
解得$\left\{\begin{array}{l}{k>0}\\{k≥\frac{\sqrt{6}}{6}或k≤-\frac{\sqrt{6}}{6}}\end{array}\right.$,
∴k的取值范圍是k≥$\frac{\sqrt{6}}{6}$.
故答案為:k≥$\frac{\sqrt{6}}{6}$.

點(diǎn)評(píng) 本題考查一元二次不等式與二次函數(shù)的應(yīng)用問(wèn)題,也考查了判別式的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c,若△ABC的面積S=a2-b2-c2+2bc,則sinA=$\frac{8}{17}$.(用數(shù)值作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.函數(shù)f(x)=3cos2$\frac{ωx}{2}$+$\frac{\sqrt{3}}{2}$sinωx-$\frac{3}{2}$(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與x軸的交點(diǎn),且△ABC為等邊三角形.將函數(shù)f(x)的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的π倍,將所得圖象向右平移$\frac{2π}{3}$個(gè)單位,再向上平移1個(gè)單位,得到函數(shù)y=g(x)的圖象
(1)求函數(shù)g(x)的解析式;
(2)求h(x)=lg[g(x)-$\frac{5}{2}$]的定義域;
(3)若3sin2$\frac{x}{2}$-$\sqrt{3}$m[g(x)-1]≥m+2對(duì)任意x∈[0,2π]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.下列條件能唯一確定一個(gè)平面的是( 。
A.空間任意三點(diǎn)B.不共線三點(diǎn)C.共線三點(diǎn)D.兩條異面直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.已知⊙O1與⊙O1的半徑分別為5cm和3cm,圓心距O1O1=7cm,則兩圓的位置關(guān)系相交.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知A(1,0)、B(2,-1),若點(diǎn)P(x,y)滿足x+y+1=0,則|PA|+|PB|的最小值為( 。
A.$\sqrt{5}$B.2$\sqrt{2}$C.$\sqrt{10}$D.$\sqrt{13}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知橢圓$\frac{x^2}{10-m}+\frac{y^2}{m-2}=1$,長(zhǎng)軸在y軸上,若焦距為8,則m等于(  )
A.4B.8C.14D.38

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.{an}為等比數(shù)列,若a2=2,a5=$\frac{1}{4}$,則a1a2+a2a3+…+anan+1=$\frac{32}{3}$(1-$\frac{1}{{4}^{n}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.如圖所示,|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,|$\overrightarrow{OC}$|=$\sqrt{3}$,∠AOB=60°,$\overrightarrow{OB}$⊥$\overrightarrow{OC}$.若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,則x,y的值分別是( 。
A.-2,-1B.-2,1C.2,-1D.2,1

查看答案和解析>>

同步練習(xí)冊(cè)答案