已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn=2n2+n,n∈N*,數(shù)列{bn}滿足an=4log2bn+3,n∈N*
(1)求an
(2)bn
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用,等差數(shù)列與等比數(shù)列
分析:(1)由an=
S1,n=1
Sn-Sn-1,n≥2
,能求出an=4n-1,(n∈N+)
(2)由已知條件得n-1=log2bn,由此能求出bn=2n-1
解答: 解:(1)由Sn=2n2+n,得
當(dāng)n=1時(shí),a1=S1=3.(2分)
當(dāng)n≥2時(shí),an=Sn-Sn-1=2n2+n-[2(n-1)2+(n-1)]
=4n-1,n∈N﹡.(4分)
n=1時(shí),也滿足.
an=4n-1,(n∈N+).(6分)
(2)∵an=4log2bn+3,an=4n-1,(n∈N+),
∴4n-4=4log2bn
∵n-1=log2bn…( 8分)
bn=2n-1,n∈N*,….(12分)
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,是中檔題,解題時(shí)要注意對(duì)數(shù)性質(zhì)的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知對(duì)任意x,不等式|x-a|+|x+2|≥4恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的前n項(xiàng)和為Sn,a1=
9
2
,且對(duì)任意的n>1,n∈N*均滿足Sn+Sn-1=2an
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若f(x)=x•log3x,b1=3,bn=f(an)(n≥2),求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

菱形ABCD的邊長(zhǎng)為3,AC與BD交于O,且∠BAD=60°.將菱形ABCD沿對(duì)角線AC折起得到三棱錐B-ADC(如圖),點(diǎn)M是棱BC的中點(diǎn),DM=
3
2
2

(Ⅰ)求證:平面ABC⊥平面MDO;
(Ⅱ)求三棱錐M-ABD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,對(duì)任意的正整數(shù)n,都有an=5Sn+1成立.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=log4|an|,求數(shù)列{
1
bnbn+2
}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足:a1=1,an+1=2Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=9na2n,求數(shù)列{bn}的前n項(xiàng)和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知α為銳角,且tanα=
2
-1,函數(shù)f(x)=2x•tan2α+sin(2α+
π
4
),數(shù)列{an}的首項(xiàng)a1=1,an+1=f(
1
2
an).
(1)求函數(shù)f(x)的表達(dá)式;
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求滿足下列條件的直線方程:
(1)經(jīng)過點(diǎn)P(2,-1)且與直線2x+3y+12=0平行;
(2)經(jīng)過點(diǎn)R(-2,3)且在兩坐標(biāo)軸上截距相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=10x-1的值域?yàn)?div id="ss2m9u4" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

同步練習(xí)冊(cè)答案