分析 由題意根據(jù)正弦函數(shù)的圖象的對稱性,求得它的對稱軸和對稱中心,再根據(jù)正弦函數(shù)的最大值求得函數(shù)y的最大值時對應(yīng)的x的集合.
解答 解:對于函數(shù)y=sin$(2x-\frac{π}{6})$-1,令2x-$\frac{π}{6}$=kπ+$\frac{π}{2}$,求得 x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z,可得它的圖象的對稱軸方程為 x=$\frac{kπ}{2}$+$\frac{π}{3}$,k∈Z;
令2x-$\frac{π}{6}$=kπ,求得 x=$\frac{kπ}{2}$+$\frac{π}{12}$,k∈Z,可得它的圖象的對稱中心為( $\frac{kπ}{2}$+$\frac{π}{12}$,0)(k∈Z);
令2x-$\frac{π}{6}$=2kπ+$\frac{π}{2}$,求得 x=kπ+$\frac{π}{3}$,k∈Z,可得函數(shù)y的最大值為0,此時,x的取值集合為{x|x=kπ+$\frac{π}{3}$,k∈Z}.
點(diǎn)評 本題主要考查正弦函數(shù)的圖象的對稱性和最大值,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0°<α<90° | B. | 90°<α<180° | C. | 0°<α<180° | D. | 45°<α<90° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | -1 | C. | 1 | D. | ±1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com