在(2x+
3
4的二項(xiàng)展開(kāi)式中,含x3項(xiàng)的系數(shù)是
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專(zhuān)題:二項(xiàng)式定理
分析:在二項(xiàng)展開(kāi)式的通項(xiàng)公式中,令x的冪指數(shù)等于3,求出r的值,即可求得常數(shù)項(xiàng)展開(kāi)式中x3的系數(shù).
解答: 解:(2x+
3
4的二項(xiàng)展開(kāi)式的通項(xiàng)公式為T(mén)r+1=
C
r
4
3
r
2
•24-r•x4-r
令4-r=3,求得r=1,
∴含x3項(xiàng)的系數(shù)是
C
1
4
3
•8=32
3

故答案為:32
3
點(diǎn)評(píng):本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),二項(xiàng)式系數(shù)的性質(zhì),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

徐州古稱(chēng)彭城,三面環(huán)山,歷來(lái)是兵家必爭(zhēng)之地,擁有云龍山、戶(hù)部山、子房山和九里山等四大名山.一位游客來(lái)徐州游覽,已知該游客游覽云龍山的概率為
2
3
,游覽戶(hù)部山、子房山和九里山的概率都是
1
2
,且該游客是否游覽這四座山相互獨(dú)立.
(1)求該游客至多游覽一座山的概率;
(2)用隨機(jī)變量X表示該游客游覽的山數(shù),求X的概率分布和數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x||x-1|<1,x∈R},B={x|x2-4x+3<0},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f′(x)=-2x,且f(0)=4,則不等式f(x)>0的解集是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD是正方形,延長(zhǎng)CD至E,使DE=CD,若點(diǎn)P是以點(diǎn)A為圓心,AB為半徑的圓弧(不超出正方形)上的任一點(diǎn),設(shè)向量
AP
AB
AE
,則λ+μ的最小值為
 
,λ+μ 的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=
4
5
,且α是第二象限角,則cosα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且
c-b
c-a
=
sinA
sinC+sinB
,則B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知
a
=(2,1),
b
=(-1,3)若
a
⊥(
a
b
),則實(shí)數(shù)λ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

a
1-i
=1-bi,(其中a,b都是實(shí)數(shù),i是虛數(shù)單位),則|a+bi|=( 。
A、
5
B、
2
C、
3
D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案