7.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn)為F,短軸長為2,點(diǎn)M為橢圓E上一個動點(diǎn),且|MF|的最大值為$\sqrt{2}+1$.
(1)求橢圓E的方程;
(2)若點(diǎn)M的坐標(biāo)為$(1,\frac{{\sqrt{2}}}{2})$,點(diǎn)A,B為橢圓E上異于點(diǎn)M的不同兩點(diǎn),且直線x=1平分∠AMB,求直線AB的斜率.

分析 (1)由題意可得b=1,a+c=$\sqrt{2}+1$,且a2-c2=1,解得a,c,進(jìn)而得到橢圓方程;
(2)設(shè)點(diǎn)A,B的坐標(biāo)分別為(x1,y1),(x2,y2),設(shè)直線MA的方程為$y-\frac{{\sqrt{2}}}{2}=k(x-1)$,聯(lián)立橢圓方程,運(yùn)用韋達(dá)定理可得A的橫坐標(biāo),同理B的橫坐標(biāo),再由直線的斜率公式,計(jì)算化簡整理即可得到所求值.

解答 解:(1)由題意可得2b=2,即b=1,
|MF|的最大值為$\sqrt{2}+1$,可得a+c=$\sqrt{2}+1$,
且a2-c2=1,得a=$\sqrt{2}$,c=1,
則橢圓E的方程為$\frac{x^2}{2}+{y^2}=1$;               
(2)設(shè)點(diǎn)A,B的坐標(biāo)分別為(x1,y1),(x2,y2),
由題意可知直線MA的斜率存在,設(shè)直線MA的方程為$y-\frac{{\sqrt{2}}}{2}=k(x-1)$,
由$\left\{\begin{array}{l}y-\frac{{\sqrt{2}}}{2}=k(x-1)\\{x^2}+2{y^2}=2\end{array}\right.$得${x^2}+2[kx+(\frac{{\sqrt{2}}}{2}-k){]^2}=2$,
即為$(2{k^2}+1){x^2}+k(2\sqrt{2}-4k)x+(1-\sqrt{2}k{)^2}-2=0$,
則$1•{x_1}=\frac{{{{(1-\sqrt{2}k)}^2}-2}}{{2{k^2}+1}}$,即${x_1}=\frac{{{{(1-\sqrt{2}k)}^2}-2}}{{2{k^2}+1}}$,
因?yàn)橹本x=1平分∠AMB,所以直線MA,MB的傾斜角互補(bǔ),斜率互為相反數(shù).
同理${x_2}=\frac{{{{(1+\sqrt{2}k)}^2}-2}}{{2{k^2}+1}}$,
則${k_{AB}}=\frac{{{y_1}-{y_2}}}{{{x_1}-{x_2}}}=\frac{{k{x_1}+\frac{{\sqrt{2}}}{2}-k-(-k{x_2}+\frac{{\sqrt{2}}}{2}+k)}}{{{x_1}-{x_2}}}$
=$\frac{{k({x_1}+{x_2})-2k}}{{{x_1}-{x_2}}}=\frac{{k•\frac{{2+4{k^2}-4}}{{2{k^2}+1}}-2k}}{{\frac{{-4\sqrt{2}k}}{{2{k^2}+1}}}}$
=$\frac{{k(4{k^2}-2)-2k(2{k^2}+1)}}{{-4\sqrt{2}k}}$=$\frac{{2{k^2}-1-(2{k^2}+1)}}{{-2\sqrt{2}}}$=$\frac{-2}{{-2\sqrt{2}}}=\frac{{\sqrt{2}}}{2}$.

點(diǎn)評 本題考查橢圓方程的求法,注意運(yùn)用短軸長和橢圓上的點(diǎn)與焦點(diǎn)的距離的最值,考查直線方程和橢圓方程聯(lián)立,運(yùn)用韋達(dá)定理和直線的斜率公式,化簡整理的運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.關(guān)于函數(shù)f(x)=5sin3x+5$\sqrt{3}$cos3x,下列說法正確的是(  )
A.函數(shù)f(x)關(guān)于x=$\frac{5}{9}$π對稱
B.函數(shù)f(x)向左平移$\frac{π}{18}$個單位后是奇函數(shù)
C.函數(shù)f(x)關(guān)于點(diǎn)($\frac{π}{18}$,0)中心對稱
D.函數(shù)f(x)在區(qū)間[0,$\frac{π}{20}$]上單調(diào)遞增

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知$\overrightarrow{a}$=(2,1),$\overrightarrow$=(-2,4),$\overrightarrow{c}$=(3,-3).
(1)求|$\overrightarrow{a}$-$\overrightarrow$|;
(2)設(shè)$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{c}$的夾角為θ,求θ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.等比數(shù)列{an}中,a4=2,a7=5,則數(shù)列{logan}的前10項(xiàng)和等于5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知拋物線x2=2py(p>0),O是坐標(biāo)原點(diǎn),點(diǎn)A,B為拋物線C1上異于O點(diǎn)的兩點(diǎn),以O(shè)A為直徑的圓C2過點(diǎn)B.
(I)若A(-2,1),求p的值以及圓C2的方程;
(Ⅱ)求圓C2的面積S的最小值(用p表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知拋物線C:x2=2py(p>0)的焦點(diǎn)為F,直線l過點(diǎn)F交拋物線C于A、B兩點(diǎn).且以AB為直徑的圓M與直線y=-1相切于點(diǎn)N.
(1)求C的方程;
(2)若圓M與直線x=-$\frac{3}{2}$相切于點(diǎn)Q,求直線l的方程和圓M的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知過拋物線C:y2=2px(p>0)的焦點(diǎn)F,斜率為$\sqrt{2}$的直線交拋物線于A(x1,y1),B(x2,y2)(x1<x2)兩點(diǎn),且|AB|=6.
(Ⅰ)求該拋物線C的方程;
(Ⅱ)過點(diǎn)F的直線l與軌跡C相交于不同于坐標(biāo)原點(diǎn)O的兩點(diǎn)A,B,求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若p:φ=2kπ+$\frac{π}{2}$(k∈Z),q:f(x)=sin(x+φ)是偶函數(shù),則p是q的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)橢圓C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0),定義橢圓C的“相關(guān)圓”E為:x2+y2=$\frac{{a}^{2}^{2}}{{a}^{2}+^{2}}$.若拋物線y2=4x的焦點(diǎn)與橢圓C的右焦點(diǎn)重合,且橢圓C的短軸長與焦距相等.
(1)求橢圓C及其“相關(guān)圓”E的方程;
(2)過“相關(guān)圓”E上任意一點(diǎn)P作其切線l,若l與橢圓C交于A,B兩點(diǎn),求證:∠AOB為定值(O為坐標(biāo)原點(diǎn));
(3)在(2)的條件下,求△OAB面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案