16.若p:φ=2kπ+$\frac{π}{2}$(k∈Z),q:f(x)=sin(x+φ)是偶函數(shù),則p是q的( 。
A.充要條件B.充分不必要條件
C.必要不充分條件D.既不充分也不必要條件

分析 f(x)=sin(x+φ)是偶函數(shù)時,可得:φ=kπ+$\frac{π}{2}$(k∈Z),即可判斷出結(jié)論.

解答 解:當(dāng)φ=2kπ+$\frac{π}{2}$(k∈Z)時,f(x)=sin(x+2kπ+$\frac{π}{2}$)=cosx,
∴p是q的充分條件;
當(dāng)f(x)=sin(x+φ)是偶函數(shù)時,φ=kπ+$\frac{π}{2}$(k∈Z),∴p是q的不必要條件,
∴p是q的充分不必要條件,
故選:B.

點評 本題考查了三角函數(shù)求值、誘導(dǎo)公式、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=1-sinx的單調(diào)遞增區(qū)間為(  )
A.[2kπ,(2k+1)π]B.[2kπ+π,(2k+1)π]
C.[2kπ-$\frac{π}{2}$,2kπ+$\frac{π}{2}$]D.[2kπ+$\frac{π}{2}$,2kπ+$\frac{3π}{2}$](以上k∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點為F,短軸長為2,點M為橢圓E上一個動點,且|MF|的最大值為$\sqrt{2}+1$.
(1)求橢圓E的方程;
(2)若點M的坐標(biāo)為$(1,\frac{{\sqrt{2}}}{2})$,點A,B為橢圓E上異于點M的不同兩點,且直線x=1平分∠AMB,求直線AB的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.下列結(jié)論正確的個數(shù)是(  )
①若$\overline a=(λ,2),\overline b=(-3,1)$,且$\overline a$與$\overline b$夾角為銳角,則$λ∈(-∞,\frac{2}{3})$;
②點O是三角形ABC所在平面內(nèi)一點,且滿足$\overline{OA}•\overline{OB}=\overline{OB}•\overline{OC}=\overline{OC}•\overline{OA}$,則點O是三角形ABC的內(nèi)心;
③若△ABC中,$\overline{AB}•\overline{BC}<0$,則△ABC是鈍角三角形;
④若△ABC中,$\overline{AB}•\overline{BC}=\overline{BC}•\overline{CA}=\overline{CA}•\overline{AB}$,則△ABC是正三角形.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知點A是拋物線y=$\frac{{x}^{2}}{2}$上的一個動點,過A作圓D:x2+(y-$\frac{1}{2}$)2=r2(r>0)的兩條切線,它們分別切圓D于E,F(xiàn)兩點.
(1)當(dāng)r=$\frac{3}{2}$,A點坐標(biāo)為(2,2)時,求兩條切線的方程;
(2)對于給定的正數(shù)r,當(dāng)A運動時,A總在圓D外部,直線EF都不通過的點構(gòu)成一個區(qū)域,求這個區(qū)域的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若經(jīng)過拋物線y2=4x焦點的直線l與圓(x-4)2+y2=4相切,則直線l的方程為y=±$\frac{2\sqrt{5}}{5}(x-1)$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知(x+a)2(x-1)3的展開式中,x4的系數(shù)為1,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知命題p:(x+1)(x-3)<0,命題q:-3<x-a<4,且p是q的充分而不必要條件,則a的取值范圍是[-1,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知拋物線M:x2=4y,圓C:x2+(y-3)2=4,在拋物線M上任取一點P,向圓C作兩條切線PA和PB,切點分別為A,B,則$\overrightarrow{CA}$•$\overrightarrow{CB}$的取值范圍是[0,4).

查看答案和解析>>

同步練習(xí)冊答案