分析 先利用二倍角公式和同角三角函數(shù)的基本關(guān)系對函數(shù)解析式化簡整理,然后利用基本不等式求得函數(shù)的最小值.
解答 解:∵x∈(0,$\frac{π}{2}$),
∴tanx>0,
∴f(x)=$\frac{1+cos2x+8si{n}^{2}x}{sin2x}$=$\frac{8si{n}^{2}x+2co{s}^{2}x}{2sinxcosx}$=$\frac{4sinx}{cosx}$+$\frac{cosx}{sinx}$=4tanx+$\sqrt{\frac{1}{tanx}}$≥2$\sqrt{4tanx•\frac{1}{tanx}}$=4,當(dāng)且僅當(dāng)tanx=$\frac{1}{2}$時取等號,
∴f(x)=$\frac{1+cos2x+8si{n}^{2}x}{sin2x}$的最小值為4.
點評 本題主要考查了同角三角函數(shù)的基本關(guān)系的應(yīng)用,二倍角化簡求值,基本不等式的求最值.考查了基礎(chǔ)知識的綜合運用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x<-$\frac{3}{8}$ | B. | x<-$\frac{1}{2}$ | C. | x≤-$\frac{1}{2}$ | D. | x≤-$\frac{3}{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com