分析 由3Sn=an+1化簡可得an+1=4an,從而寫出數(shù)列{an}的通項公式,再求Sn.
解答 解:∵3Sn=an+1,3Sn-1=an,
∴3an=an+1-an,
∴an+1=4an,
又∵a1=1,a2=3,
∴數(shù)列{an}的通項公式an=$\left\{\begin{array}{l}{1,n=1}\\{3•{4}^{n-2},n≥2}\end{array}\right.$,
∴Sn=1+3+12+…+3•4n-2=1+3•$\frac{1-{4}^{n-1}}{1-4}$
=4n-1.
點評 本題考查了數(shù)列的通項公式與前n項和公式的求法及應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com