精英家教網 > 高中數學 > 題目詳情
14.執(zhí)行如圖所示的程序框圖,若S0=2,則程序運行后輸出的n的值為4.

分析 S0=2,Sn←3Sn-1+1,Sn≥202時,輸出n.

解答 解:n=1時,S←3×2+1;n=2時,S←3×7+1;n=3時,S←3×22+1;n=4時,S←3×67+1=202,
因此輸出n=4.
故答案為:4.

點評 本題考查了程序框圖與數列求和,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

4.滿足{1,2}?A⊆{1,2,3,4}的集合A的個數是3.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.現(xiàn)有編號為①②③④的四個判斷題,已知其中3正1誤,甲判斷①②③正確,乙判斷①③④正確,丙說:“我判斷為正確的題目均有且只有兩個跟甲、乙相同”,則在丙的判斷中,判斷為正確的題目一定含有②④.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.今年我國許多省市霧霾頻發(fā),為增強市民的環(huán)境保護意識,某市面向全市學校征召100名教師做義務宣傳志愿者,成立環(huán)境保護宣傳組,現(xiàn)把該組的成員按年齡分成5組:第一組[20,25),第2組[25,30),第3組[30,35),第4組[35,40),第5組[40,45),得到的頻率分布直方圖如圖所示.
(Ⅰ)若從第3,4,5組中用分層抽樣的方法選出6名志愿者參加某社區(qū)的宣傳活動,應從第3,4,5組各選出多少名志愿者?
(Ⅱ)在(Ⅰ)的條件下,該組織決定在這6名志愿者中隨機選2名志愿者介紹宣傳經驗,求第4組至少有1名志愿者被選中的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

9.在如圖所示的幾何體中,正方形ABEF所在的平面與正三角形ABC所在的平面互相垂直,CD∥BE,且BE=2CD,M是ED的中點.
(1)求證:AD∥平面BFM;
(2)求二面角E-BM-F的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知函數f(x)=ex-aex(a∈R,e是自然對數的底數).
(1)討論函數f(x)的單調性;
(2)當x∈R時,f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.在一個個體數目為1002的總體中,要利用系統(tǒng)抽樣抽取一個容量為50的樣本,先用簡單隨機抽樣刪除兩個個體,然后再從這1000個個體中抽50個個體,在這個過程中,每個個體被抽到的概率為( 。
A.$\frac{1}{20}$
B.$\frac{50}{1002}$
C.$\frac{1}{1001}$
D.有兩個個體與其它個體被抽到的概率不相等

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.如圖,點F為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)右焦點,圓A:(x-t)2+y2=$\frac{16}{3}$(t<0)與橢圓C的一個公共點為B(0,2),且直線FB與圓A相切于點B.
(Ⅰ)求t的值和橢圓C的標準方程;
(Ⅱ)若F′是橢圓C的左焦點,點P是橢圓C上除長軸上兩個頂點外的任意一點,且∠F′PF=θ,求θ的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.將棱長為2的正方體沿對角A1BAD1截去一半得到如圖所示的幾何體,點E,F(xiàn)分別是BC,DC的中點,AF與DE相交于O點.
(1)證明:AF⊥平面DD1E;
(2)求三棱錐A-EFD1的體積.

查看答案和解析>>

同步練習冊答案