【題目】已知函數(shù)f(x)=x2﹣2ax﹣2alnx(a∈R),則下列說法正確的是 ①當a<0時,函數(shù)y=f(x)有零點;
②若函數(shù)y=f(x)有零點,則a<0;
③存在a>0,函數(shù)y=f(x)有唯一的零點;
④若函數(shù)y=f(x)有唯一的零點,則a≤1.

【答案】①③④
【解析】解:令f(x)=x2﹣2ax﹣2alnx=0,則2a(x+lnx)=x2 , ∴2a= ,令g(x)= ,
則g′(x)= =
令h(x)=x+lnx,通過作出兩個函數(shù)y=lnx及y=﹣x的圖像(如下圖)

發(fā)現(xiàn)h(x)有唯一零點在(0,1)上,
設(shè)這個零點為x0 , 當x∈(0,x0)時,g′(x)<0,g(x)在(0,x0)上單調(diào)遞減,x=x0是漸近線,
當x∈(x0 , 1)時,g′(x)<0,則g(x)在(x0 , 1)上單調(diào)遞減,
當x∈(1,+∞)時g′(x)>0,g(x)在(1,+∞)單調(diào)遞增,
∴g(1)=1,可以作出g(x)= 的大致圖像,

結(jié)合圖像可知,當a<0時,y=2a與y=g(x)的圖像只有一個交點,
則函數(shù)y=f(x)只有一個零點,故選項A正確;
若函數(shù)y=f(x)有零點,則a<0或a≥ ,故選項B不正確;
存在a= >0,函數(shù)y=f(x)有唯一零點,故選項C正確;
若函數(shù)y=f(x)有唯一零點,則a<0,或a= ,則a≤1,故選項D正確.
所以答案是:①③④.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某個體服裝店經(jīng)營某種服裝,在某周內(nèi)獲純利y(元)與該周每天銷售這種服裝件數(shù)x之間的一組數(shù)據(jù)關(guān)系如下表

x

3

4

5

6

7

8

9

y

66

69

73

81

89

90

91


(1)求純利y與每天銷售件數(shù)x之間的回歸方程;
(2)若該周內(nèi)某天銷售服裝20件,估計可獲純利多少元?
已知: x =280, y =45309, xiyi=3487, = , =

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】秦九韶算法是中國南宋時期的數(shù)學家秦九韶提出的一種多項式簡化算法,對于求一個n次多項式函數(shù)fn(x)=anxn+an1xn1+…+a1x+a0的具體函數(shù)值,運用常規(guī)方法計算出結(jié)果最多需要n次加法和 乘法,而運用秦九韶算法由內(nèi)而外逐層計算一次多項式的值的算法至多需要n次加法和n次乘法.對于計算機來說,做一次乘法運算所用的時間比做一次加法運算要長得多,所以此算法極大地縮短了CPU運算時間,因此即使在今天該算法仍具有重要意義.運用秦九韶算法計算f(x)=0.5x6+4x5﹣x4+3x3﹣5x當x=3時的值時,最先計算的是(
A.﹣5×3=﹣15
B.0.5×3+4=5.5
C.3×33﹣5×3=66
D.0.5×36+4×35=1336.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知☉O1與☉O2相交于A,B兩點,過點A作☉O1的切線交☉O2于點C,過點B作兩圓的割線,分別交☉O1、☉O2于點D、E,DE與AC相交于點P.若AD是☉O2的切線,且PA=6,PC=2,BD=9,則AB的長為____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)當時,求函數(shù)的極小值;

(Ⅱ)設(shè)定義在上的函數(shù)在點處的切線方程為,當時,若內(nèi)恒成立,則稱為函數(shù)的“轉(zhuǎn)點”.當時,試問函數(shù)是否存在“轉(zhuǎn)點”?若存在,求出轉(zhuǎn)點的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場經(jīng)銷某商品,根據(jù)以往資料統(tǒng)計,顧客采用的付款期數(shù)的分布列為:

1

2

3

4

5

0.4

0.2

0.2

0.1

0.1

商場經(jīng)銷該商品,可采用不同形式的分期付款,付款的期數(shù)(單位: )與商場經(jīng)銷一件商品的利潤(單位:元)滿足如下關(guān)系:

(Ⅰ)若記事件“購買該商品的3位顧客中,至少有1位采用一次性全額付款方式”為,試求事件的概率;

(Ⅱ)求商場經(jīng)銷一件商品的利潤的分布列及期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出50個數(shù),1,2,4,7,11,…,其規(guī)律是:第1個數(shù)是1,第2個數(shù)比第1個數(shù)大1,第3個數(shù)比第2個數(shù)大2,第4個數(shù)比第3個數(shù)大3,…,以此類推.要求計算這50個數(shù)的和.將右邊給出的程序框圖補充完整,

(1)___________________ (2)_______________________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班名學生在一次坐位體前屈測試中,成績?nèi)拷橛?/span>之間,將測試結(jié)果按如下方式分成五組:第一組,第二組,…,第五組,下圖是按上述分組方法得到的頻率分布直方圖.

(Ⅰ)若成績大于或等于且小于認為良好,求該班在這次坐位體前屈測試中成績良好的人數(shù);

(Ⅱ)若成績之差的絕對值大于認為兩位學生的身體韌度存在明顯差異.現(xiàn)從第一、五組中隨機取出兩個成績,求這兩位學生的身體韌度存在明顯差異的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,已知曲線的極坐標方程為,將曲線為參數(shù)),經(jīng)過伸縮變換后得到曲線.

1)求曲線的參數(shù)方程;

2)若點的曲線上運動,試求出到直線的距離的最小值.

查看答案和解析>>

同步練習冊答案