6.若$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,1),則$\overrightarrow{a}$在$\overrightarrow$方向上的正射影的數(shù)量為$\frac{\sqrt{2}}{2}$.

分析 根據(jù)向量數(shù)量積的關(guān)系進(jìn)行化簡(jiǎn),結(jié)合向量投影的定義進(jìn)行求解即可.

解答 解:∵$\overrightarrow{a}$=(2,3),$\overrightarrow$=(-1,1),
∴$\overrightarrow{a}$在$\overrightarrow$方向上的正射影的數(shù)量|$\overrightarrow{a}$|cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow|}$=$\frac{2×(-1)+3×1}{\sqrt{(-1)^{2}+{1}^{2}}}$=$\frac{\sqrt{2}}{2}$,
故答案為:$\frac{\sqrt{2}}{2}$

點(diǎn)評(píng) 本題主要考查向量數(shù)量積的應(yīng)用,利用向量投影的定義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.用分析法證明:$\sqrt{3}$+$\sqrt{5}$>$\sqrt{6}$+$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.據(jù)統(tǒng)計(jì),2015年“雙11”天貓總成交金額突破912億元.某購(gòu)物網(wǎng)站為優(yōu)化營(yíng)銷(xiāo)策略,對(duì)11月11日當(dāng)天在該網(wǎng)站進(jìn)行網(wǎng)購(gòu)消費(fèi)且消費(fèi)金額不超過(guò)1000元的1000名網(wǎng)購(gòu)者(其中有女性800名,男性200名)進(jìn)行抽樣分析.采用根據(jù)性別分層抽樣的方法從這1000名網(wǎng)購(gòu)者中抽取100名進(jìn)行分析,得到下表:(消費(fèi)金額單位:元)
女性消費(fèi)情況:
消費(fèi)金額(0,200)[200,400)[400,600)[600,800)[800,1000)
人數(shù)5101547x
男性消費(fèi)情況:
消費(fèi)金額(0,200)[200,400)[400,600)[600,800)[800,1000)
人數(shù)2310y2
(1)計(jì)算x,y的值;在抽出的100名且消費(fèi)金額在[800,1000](單位:元)的網(wǎng)購(gòu)者中隨機(jī)選出兩名發(fā)放網(wǎng)購(gòu)紅包,求選出的兩名網(wǎng)購(gòu)者恰好是一男一女的概率;
(2)若消費(fèi)金額不低于600元的網(wǎng)購(gòu)者為“網(wǎng)購(gòu)達(dá)人”,低于600元的網(wǎng)購(gòu)者為“非網(wǎng)購(gòu)達(dá)人”,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)2×2列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過(guò)0.010的前提下認(rèn)為“是否為‘網(wǎng)購(gòu)達(dá)人’與性別有關(guān)?”
女性男性總計(jì)
網(wǎng)購(gòu)達(dá)人50         5          55         
非網(wǎng)購(gòu)達(dá)人301545
總計(jì)8020100
附:
P(k2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879
(k2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.函數(shù)y=$\sqrt{lo{g}_{4}x}$的定義域是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.若直線(xiàn)x+y+1=0與直線(xiàn)ax+y-1=0互相平行,則a的值等于(  )
A.1B.$\frac{1}{2}$C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.過(guò)圓O:x2+y2=4內(nèi)一點(diǎn)A(不與O重合)且與圓O相切的動(dòng)圓圓心C的軌跡是以O(shè),A為焦點(diǎn)的橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知圓C過(guò)點(diǎn)O(0,0),和點(diǎn)T(1,3),且圓心在直線(xiàn)n:x-2y=0上,直線(xiàn)l:x+my-2m-1=0,m∈R,
(1)若直線(xiàn)n與直線(xiàn)l平行,求這兩條平行線(xiàn)間的距離;
(2)求圓C的方程;
(3)設(shè)直線(xiàn)l恒過(guò)定點(diǎn)A,求點(diǎn)A的坐標(biāo)并判斷點(diǎn)A與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.已知圓C:x2+y2-6x+4y+12=0,點(diǎn)P在圓上,求點(diǎn)P到直線(xiàn)l:x+y-5=0的最大距離和最小距離,并求最遠(yuǎn)點(diǎn)及最近點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.設(shè)x→x0時(shí),f(x)→∞,g(x)→A(A是常數(shù)),試證明:$\underset{lim}{x→{x}_{0}}$$\frac{g(x)}{f(x)}$=0.

查看答案和解析>>

同步練習(xí)冊(cè)答案